Vol. 130
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-01
Compact High Gain Microstrip Array Antenna Using DGS Structure for 5G Applications
By
Progress In Electromagnetics Research C, Vol. 130, 213-225, 2023
Abstract
In this paper, a microstrip millimeter-wave (MMW) array antenna with a Defected Ground Structure (DGS) has been presented for the applications of fifth generation (5G) wireless networks. This novel antenna, which has small dimensions with higher gain, can be used for licensed 5G applications in many countries, like the United States of America, Canada, Australia, Japan, India, and China. It also covers a band that is planned for licensed use in some countries, like Colombia and Mexico. The proposed model has a single element design, and for gain and efficiency enhancement, a two-element array has been designed. Both single and two element models resonate at a frequency of 39.96 GHz. Using a commercial electromagnetic simulator (CST-Studio), the model was designed and optimized with the goal of achieving a return loss rate of less than -10 dB. The proposed antenna is built on a compact Rogers substrate (RT-5880) with dimensions of 6 mm x 6 mm for the substrate of the single element and 9 mm x 13 mm for the two-element array. The substrate has a thickness of 0.508 mm, a dielectric constant εr of 2.2, and a loss tangent tanδ value of 0.0009. This suggested design is small, low profile, and simple to guarantee the dependability, mobility, and high efficiency needed to be used with a variety of 5G wireless applications. The high gain of 11.6 dBi for the two-element array model of the proposed antenna is one of its distinctive features. The suggested single element model has an impedance bandwidth of 2.3 GHz, and 2.1 for the two-element array model, satisfying efficiency of approximately 73.5% for the single element and 85% for the two-element array model, respectively. The proposed structure, compared to other designs found in the literature, has smaller size while maintaining other parameter values of comparable orders.
Citation
Hesham Mahmoud Emara, Sherif K. El Dyasti, Hussein Hamed Ghouz, Mohamed Fathy Abo Sree, and Sara Yehia Abdel Fatah, "Compact High Gain Microstrip Array Antenna Using DGS Structure for 5G Applications," Progress In Electromagnetics Research C, Vol. 130, 213-225, 2023.
doi:10.2528/PIERC22122110
References

1. Ahmad, I., H. Sun, Y. Zhang, and A. Samad, "High gain rectangular slot microstrip patch antenna for 5G mm-Wave wireless communication," International Conference on Computer and Communication Systems (ICCCS), Shanghai, 2020.

2. Roh, W., J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Communications Magazine, Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750

3. Ghouz, H. H., M. F. Sree, and M. A. Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, Vol. 8, 9532-9539, 2020.
doi:10.1109/ACCESS.2019.2963644

4. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.

5. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.

6. Kraus, J. D. and R. J. Marhefka, Antennas for All Applications, John Wiley & Sons, 2002.

7. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley & Sons, 2004.

8. Chen, Z. N. and M. Y. Chia, "Broadband Planar Antennas: Design and Applications," John Wiley & Sons, 2006.

9. Al-Hetar, A. M. and E. A. Aqlan, "High performance & compact size of microstrip antenna for 5G applications," 2021 International Conference of Technology, Science and Administration (ICTSA), 1-3, 2021.

10. Veerendra, K., G. P. Ratna, and S. N. Bhavanam, "Design of microstrip patch antenna with parasitic elements for wideband applications," International Journal of Innovative Research in Technology, Vol. 6, 324-327, 2019.

11. Dheyab, E. and N. Qasem, "Design and optimization of rectangular microstrip patch array antenna using frequency selective surfaces for 60 GHz," International Journal of Applied Engineering Research, Vol. 11, No. 7, 4679-4687, 2016.

12., 5G Spectrum GSMA Public Policy Position. (2022). [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2022/06/5G-Spectrum-Positions.pdf.

13., Qualcomm, Global update on spectrum for 4G & 5G, 2020. [Online]. Available: https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf.

14., GTW Series. (2019). IMT in Bands Between 24.25 GHz and 86 GHz to Bolster 5G, WRC Series, WRC-19 Agenda Item 1.13. [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/07/Agenda-Item-1.13-for-5G.pdf.

15. I. Workshop "5G and spectrum: Different approaches, iTU Work-shop: 5G and new technologies,", Lome, Republic of Togo, 2019. [Online]. Available: https://www.itu.int/en/ITU-D/Regulatory-Market/Documents/Events2019/Togo/5G-Ws/Ses4 Gomes-5Gspectrum-Assignments.pdf.

16., International Telecommunication Union, Final Acts, World Radiocommunication Conference 2019 (WRC-19). [Online]. Available: https://www.itu.int/dms pub/itu-r/opb/act/R-ACT-WRC.14-2019-PDF-E.pdf.

17. Ghouz, H. H., "Novel compact and dual-broadband microstrip MIMO antennas for wireless applications," Progress In Electromagnetics Research B, Vol. 63, 107-121, 2015.
doi:10.2528/PIERB15051304

18. Binshitwan, A. A., S. M. Keskeso, A. A. Alquzayzi, and A. Elbarsha, "38 GHz rectangular microstrip antenna with DGS for 5G applications," 2021 International Congress of Advanced Technology and Engineering (ICOTEN), 1-4, 2021.

19. Sneha, A. K., "Design of rectangular patch antenna using tapered line transfer coupled feed," International Journal of Engineering, Management & Sciences (IJEMS), Vol. 1, Oct. 2014.

20. Sharma, S., C. C. Tripathi, and R. Rishi, "Impedance matching techniques for microstrip patch antenna," Indian Journal of Science and Technology, Vol. 10, 1-16, 2017.
doi:10.17485/ijst/2013/v6i7.7

21. Rahman, M. Z., K. C. Nath, and M. Mynuddin, "Performance analysis of an inset-fed circular microstrip patch antenna using different substrates by varying notch width for wireless communications," International Journal of Electromagnetics and Applications, Vol. 10, 19-29, 2020.

22. Prabhakar, D., P. M. Rao, and D. M. Satyanarayana, "Characteristics of patch antenna with notch gap variation for Wi-Fi application," International Journal of Applied Engineering Research, Vol. 11, No. 8, 5741-5746, 2016.

23. Rahman, M. Z., M. Mynuddin, and K. C. Debnath, "The significance of notch width on the performance parameters of inset feed rectangular microstrip patch antenna," International Journal of Electromagnetics and Applications, Vol. 10, 7-18, 2020.

24. Joshi, A. and R. Singhal, "Vertex-fed hexagonal antenna with low cross-polarization levels," Advances in Electrical and Electronic Engineering, Vol. 17, No. 2, 138-145, 2019.
doi:10.15598/aeee.v17i2.3004

25. Mishra, B., V. Singh, and R. Singh, "Gap coupled dual-band petal shape patch antenna for WLAN/WiMAX applications," Advances in Electrical and Electronic Engineering, Vol. 16, No. 2, 185, 2018.
doi:10.15598/aeee.v16i2.2416

26. Emara, H. M., H. H. Ghouz, S. K. El Dyasti, and M. F. Sree, "Novel compact microstrip antennas with two different bands for 5G applications," 2022 International Telecommunications Conference (ITC-Egypt), 1-6, 2022.

27. Emara, H. M., S. K. El Dyasti, H. H. Ghouz, and M. F. Sree, "Design of a compact dual-frequency microstrip antenna using DGS structure for millimeter-wave applications," Journal of Advanced Research in Applied Sciences and Engineering Technology, Vol. 28, No. 3, 221-234, 2022.
doi:10.37934/araset.28.3.221234

28., Southwest microwave, Microwave Products Division, End Launch Connectors. https://mpd.southwestmicrowave.com/product-category/end-launch-connectors/.

29. Deckmyn, T., M. Cauwe, D. V. Ginste, H. Rogier, and S. Agneessens, "Dual-band (28, 38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2405-2412, Apr. 2019.
doi:10.1109/TAP.2019.2894325

30. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401

31. Rahayu, Y. and M. I. Hidayat, "Design of 28/38 GHz dual-band triangular-shaped slot microstrip antenna array for 5G applications," 2nd International Conference on Telematics and Future Generation Networks (TAFGEN), 93-97, 2018.
doi:10.1109/TAFGEN.2018.8580487

32. Chu, H. and Y. X. Guo, "A filtering dual-polarized antenna subarray targeting for base stations in millimeter-wave 5G wireless communications," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 6, 964-973, Jun. 2017.
doi:10.1109/TCPMT.2017.2694848

33. Mahmoud, K. R. and A. M. Montaser, "Performance of tri-band multi-polarized array antenna for 5G mobile base station adopting polarization and directivity control," IEEE Access, Vol. 6, 8682-8694, Mar. 2018.
doi:10.1109/ACCESS.2018.2805802

34. Mahmoud, K. R. and A. M. Montaser, "Synthesis of multi-polarised upside conical frustum array antenna for 5G mm-Wave base station at 28/38 GHz," IET Microwave, Antennas and Propagation, Vol. 12, No. 9, 1559-1569, Jul. 2018.
doi:10.1049/iet-map.2017.1138

35. Hasan, M. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, Aug. 2019.
doi:10.1080/09205071.2019.1617790

36. Jilani, S. F. and A. Alomainy, "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microwaves Antennas & Propagation, Vol. 12, No. 5, 672-677, Apr. 2018.
doi:10.1049/iet-map.2017.0467