Vol. 130
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-02-27
Optimization of a Circularly Polarized Conical Beam Microstrip Patch Antenna Array Conformed on a Cylindrical Surface Using HFSS
By
Progress In Electromagnetics Research C, Vol. 130, 183-199, 2023
Abstract
When a planar microstrip patch antenna is conformed to any non-planar surface (e.g., aircraft, missiles etc.), the curvature of the host surface affects its design parameters, which in turn affects its radiation performance. Therefore, achieving a target radiation performance with a planar antenna on a non planar host surface is always a big challenge for an antenna designer. To address this issue, a report on an electromagnetic simulation-based method to optimize a planar-shaped microstrip antenna array conformed to a cylindrical surface is presented here. HFSS was used to investigate the role of different design parameters of the antenna array in the planar and cylindrical planes (for different radius of curvature). Finally, using these simulation observations, the dimensions of the planar antenna conformed to a cylindrical surface (with a radius of curvature of 110 mm) were optimized to achieve a target output performance (in terms of gain, return loss, and VSWR) while retaining its radiation pattern geometry as well as polarization characteristics. A planar 2×2 circularly polarized antenna array with a conical beam pattern from the published literature was used to carry out the current work. After rigorous optimization, return loss < -19 dB, VSWR of 1.807, and as much as 8.135 dBi gain at 2.45 GHz have been achieved. This report should be a useful guide for mounting any planar antenna array on a non-planar host surface. And it will also be helpful to design conformal microstrip antennas for different practical applications.
Citation
Probir Kumar Dhar, "Optimization of a Circularly Polarized Conical Beam Microstrip Patch Antenna Array Conformed on a Cylindrical Surface Using HFSS," Progress In Electromagnetics Research C, Vol. 130, 183-199, 2023.
doi:10.2528/PIERC22120613
References

1. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Peter Peregrinus, 1989.

2. Wong, K. L., Design of Nonplanar Microstrip Antennas and Transmission Lines, John Wiley & Sons, Inc., 1999, ISBN: 978-0-471-46390-0.
doi:10.1002/0471200662

3. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, John Wiley & Sons, Inc., 2006.
doi:10.1002/047178012X

4. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, Jan. 1981.
doi:10.1109/TAP.1981.1142523

5. Richard, W. F., Y. T. Lo, and D. D. Harrison, "An improved theory for microstrip antennas and applications," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 38-46, Jan. 1981.
doi:10.1109/TAP.1981.1142524

6. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Ed., John Wiley & Sons, Inc., 1997.

7. Garg, R., P. Bhartia, I. Bhal, and A. Ittipiboon, Microstrip Antenna Design Handbook, 1st Ed., Artech House, 2000.

8. Rostan, F., G. Gottwald, and W. Wiesbeck, "Design and performance of con-formal microstrip patch arrays on cylindrical surfaces," Proc. EuMC, 1756-1761, Cannes, 1994.

9. Godara, L. C., "Applications of antenna arrays to mobile communications, Part II: Beam-forming, and direction-of-arrival considerations," Proc. IEEE, Vol. 85, No. 8, 1195-1245, Aug. 1997.
doi:10.1109/5.622504

10. Krowne, C. M., "Cylindrical-rectangular microstrip antenna," IEEE Trans. Antennas Propag., Vol. 31, No. 1, 194-199, Jan. 1983.
doi:10.1109/TAP.1983.1143000

11. Thomas, W., R. C. Hall, and D. I. Wu, "Effects of curvature on fabrication of wraparound antennas," IEEE International Symposium on Antenna and Propagation Society, Vol. 3, 1512-1515, Jul. 1997.

12. Ferreira, D. B., C. B. de Paula, and D. C. Nascimento, "Design techniques for conformal microstrip antennas and their arrays," Advancement in Microstrip Antennas with Recent Applications, Mar. 2013.

13. Jedlicka, R., M. Toe, and K. Carver, "Measured mutual coupling between microstrip antennas," IEEE Trans. Antennas Propag., Vol. 29, 147-149, Jan. 1981.
doi:10.1109/TAP.1981.1142529

14. Penard, E. and J. Danial, "Mutual coupling between microstrip antennas," Electron. Lett., Vol. 18, No. 14, 605-607, Jul. 1982.
doi:10.1049/el:19820415

15. Pozar, D., "Input impedance and mutual coupling of rectangular microstrip antennas," IEEE Trans. Antennas Propag., Vol. 30, 1191-1196, Nov. 1982.

16. Abd-Alhameed, R. A., N. J. McEwan, E. M. Ibrahim, and P. S. Excell, "A new design of horizontally-polarised and dual-polarized uniplanar antennas for HIPERLAN," IEEE Trans. Antennas Propag., Vol. 51, 229-237, 2003.

17. Zhou, D., R. A. Abd-Alhameed, C. H. See, N. J. McEwan, and P. S. Excell, "New circularly-polarised conical-beam microstrip patch antenna array for short-range communication systems," Microwave And Optical Technology Letters, Vol. 51, No. 1, Jan. 2009.
doi:10.1002/mop.23956

18. Ansoft, High Frequency Structure Simulator (HFSS), v.15.

19. Haneishi, M. and S. Yoshida, "A design method of circularly polarised rectangular microstrip antenna by one-point feed," Microstrip Antenna Design, 313-321, K. C. Gupta and A. Benalla (eds.), Artech House, Norwood, MA, 1988.

20. Cairo, L. and T. Kahan, Variational Techniques in Electromagnetism, Blackie and Son, 1965.

21. Warnick, K. and M. Jensen, "Effects of mutual coupling on interference mitigation with a focal plane array," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2490-2498, Aug. 2005.
doi:10.1109/TAP.2005.852278

22. Kolev, N. Z., "Design of a microstrip conform GPS patch antenna," IEEE 17th International Conference on Applied Electromagnetic and Communications, 201-204, 2003.

23. Elrashidi, A., K. Elleithy, and H. Bajwa, "Performance analysis of a microstrip printed antenna conformed on cylindrical body at resonance frequency 4.6 GHz for TM01 mode," Procedia Computer Science, 9th International Conference on Mobile Web Information Systems, Vol. 10, 775-784, 2012.

24. Elleithy, K., A. Elrashidi, and H. Bajwa, "Conformal microstrip printed antenna," ASEE Northeast Section Conference, University of Hartford, Connecticut, 2011.

25. You, C., W. Hwang, and M. Tenteris, "Impact behavior and radiation performance of a structurally integrated antenna array conformed around cylindrical bodies," IEEE International Symp. Antennas and Propag. Soc., 3844-3847, Jun. 2007.

26. Wei, H., H. Yejun, L. Zhang, S. W. Wong, W. Li, and A. Boag, "A low-profile circularly polarized conical-beam antenna with wide overlap bandwidth," Hindawi, Wireless Communications and Mobile Computing, Article ID 6648887, 11pages, 2021.

27. Lin, W. and H. Wong, "Circularly polarized conical-beam antenna with wide bandwidth and low profile," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 5974-5982, 2014.
doi:10.1109/TAP.2014.2360223

28. Yu, D., S.-X. Gong, Y.-T. Wan, et al. "Wideband conical-beam circularly polarized microstrip antenna for large ground plane," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4614-4619, 2015.
doi:10.1109/TAP.2015.2464086

29. Guan, D., Y. Zhang, Z. Qian, et al. "Compact circular polarised SIW array antenna with high gain and conical-beam," Electron. Lett., Vol. 51, No. 24, 1962-1964, 2015.
doi:10.1049/el.2015.2899

30. Xu, H., J. Zhou, K. Zhou, et al. "Low-profile circularly polarised patch antenna with high gain and conical beam," IET Microw. Antennas Propag., Vol. 12, No. 7, 1191-1195, 2018.
doi:10.1049/iet-map.2017.0928

31. Jaglan, N., S. D. Gupta, and M. S. Sharawi, "18 element massive MIMO/diversity 5G smartphones antenna design," IEEE Access, Vol. 2, 533-545, 2021.

32. Jaglan, N., S. D. Gupta, B. K. Kanaujia, and M. S. Sharawi, "10 element sub-6-GHz multi-band double-T based MIMO antenna system for 5G smartphones," IEEE Access, Vol. 9, 118662-118672, 2021.
doi:10.1109/ACCESS.2021.3107625

33. Vlasits, T., E. Korolkiewicz, A. Sambell, and B. Robinson, "Performance of a cross-aperture coupled single feed circularly polarized patch antenna," Electron Lett., Vol. 32, No. 7, 612-613, Mar. 1996.
doi:10.1049/el:19960459

34. Huang, C., J. Wu, and K. Wong, "Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization," IEEE Trans. Antennas Propag., Vol. 47, No. 4, 605-609, 1999.
doi:10.1109/8.768798

35. Huang, C., J. Wu, and K. Wong, "Slot-coupled microstrip antenna for broadband circular polarization," Electron Lett., Vol. 34, No. 9, 835-836, 1998.
doi:10.1049/el:19980676

36. Adrian, A., "Dual aperture-coupled microstrip antenna for dual or circular polarization," Electron Lett., Vol. 23, 1226-1227, 1987.
doi:10.1049/el:19870854

37. Karmakar, N. C. and M. E. Bialkowski, "Circularly polarized aperture coupled circular microstrip patch antennas for L-band applications," IEEE Trans. Antennas Propag., Vol. 47, 933-940, 1999.
doi:10.1109/8.774159

38. Pozar, D. M. and S. M. Duffy, "A dual-band circularly polarized aperture-coupled stacked microstrip antenna for global positioning satellite," IEEE Trans. Antennas Propag., Vol. 45, 1618-1625, 1997.
doi:10.1109/8.650073

39. Targonski, S. D. and D. M. Pozar, "Design of wideband circularly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 41, 214-220, 1993.
doi:10.1109/8.214613