Vol. 131
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-15
Design and Optimization of Substrate Integrated Waveguide Bandpass Filter with T-Shape Slots Using Artificial Neural Networks
By
Progress In Electromagnetics Research C, Vol. 131, 49-58, 2023
Abstract
The present paper describes a substrate integrated waveguide (SIW) band pass filter with a T-shape slot on the upper layer, which exhibits a wide-band frequency response. The parameters of the filter are optimized by using Multi-Layer Perceptron artificial neural network (MLP-ANN) that uses Levenberg-Marquardt (LM) algorithm. A comparison is made between ANN optimized results and simulated results, and they result in minimum mean square error (MSE). A physical prototype is fabricated using printed circuit board (PCB) process, and measurements are conducted using the network analyzer. The measured results obtained agree well with the estimated ones. The filter shows a wide-band response with a transmission bandwidth of 8.96 GHz, ranging from 6.10 to 15.06 GHz with a fractional bandwidth of 81.4%. Furthermore, the insertion loss of the filter in the entire passband is varied from -0.4 dB to -0.2 dB, and the return loss is more than -10 dB.
Citation
Ranjit Kumar Rayala, Ramasamy Pandeeswari, and Singaravelu Raghavan, "Design and Optimization of Substrate Integrated Waveguide Bandpass Filter with T-Shape Slots Using Artificial Neural Networks," Progress In Electromagnetics Research C, Vol. 131, 49-58, 2023.
doi:10.2528/PIERC22113003
References

1. Chen, X. and K. Wu, "Substrate integrated waveguide filters: Design techniques and structure innovations," IEEE Microwave Magazine, Vol. 15, No. 6, 121-133, 2014.
doi:10.1109/MMM.2014.2332886

2. Maurizio, B., G. Apostolos, and W. Ke, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas and Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

3. Krushna Kanth, V. and S. Raghavan, "EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application," J. Comput. Electron., Vol. 18, 189-196, 2019.
doi:10.1007/s10825-018-1272-z

4. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820

5. Muchhal, N., A. Chakraborty, M. Vishwakarma, and S. Srivastava, "Slotted folded substrate integrated waveguide band pass filter with enhanced bandwidth for Ku/K band applications," Progress In Electromagnetics Research M, Vol. 70, 51-60, 2018.
doi:10.2528/PIERM18041804

6. Wu, Y.-D., G. H. Li, W. Yang, and X. Yang, "Design of compact wideband QMSIW band-pass filter with improved stopband," Progress In Electromagnetics Research Letters, Vol. 65, 75-79, 2017.
doi:10.2528/PIERL16110301

7. Tomassoni, C., L. Silvestri, M. Bozzi, and L. Perregrini, "Substrate-integrated waveguide filters based on mushroom-shaped resonators," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 4-5, 741-749, 2016.
doi:10.1017/S1759078716000453

8. Kanth, V. K. and S. V. Raghavan, "Design and development of angularly stable and polarisation rotating FSS radome based on substrate-integrated waveguide technology," IET Microwaves, Antennas and Propagation, Vol. 13, No. 4, 478-484, 2019.
doi:10.1049/iet-map.2018.5386

9. Kanth, V. K. and S. Raghavan, "Design of SIW cavity models to control the bandwidth of frequency selective surface," IET Microwaves, Antennas and Propagation, Vol. 13, No. 14, 2515-2524, 2019.
doi:10.1049/iet-map.2019.0377

10. Danaeian, M., A. G. Ashkezari, K. Afrooz, and A. Hakimi, "A compact wide bandpass filter based on Substrate Integrated Waveguide (SIW) structure," Journal of Communication Engineering, 2015.

11. Hao, Z.-C., W. Hong, J.-X. Chen, X.-P. Chen, and K. Wu, "Compact super-wide bandpass Substrate Integrated Waveguide (SIW) filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2968-2977, 2005.
doi:10.1109/TMTT.2005.854232

12. Chen, P., L. Li, K. Yang, and F. Hua, "Design of substrate integrated plasmonic waveguide bandpass filter with T-shaped spoof surface Plasmon polaritons," Electromagnetics, Vol. 40, No. 8, 563-575, 2020.
doi:10.1080/02726343.2020.1838055

13. Caballero, E. D., H. Esteban, A. Belenguer, V. E. Boria, J. V. Morro, and J. Cascon, "Efficient design of substrate integrated waveguide filters using a hybrid mom/mm analysis method and efficient rectangular waveguide design tools," International Conference on Electromagnetics in Advanced Applications, 456-459, 2011.

14. Chen, R. S., S. Wong, L. Zhu, and Q. Chu, "Wideband bandpass filter using U-slotted Substrate Integrated Waveguide (SIW) cavities," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 1, 1-3, 2015.
doi:10.1109/LMWC.2014.2363291

15. Wang, Y., Y. Fu, Q. Liu, and S. Dong, "Design of asubstrate integrated waveguide bandpass filter using in microwave communication systems," International Conference on Microwave and Millimeter Wave, Technology, 1952-1954, Chengdu, China, 2010.
doi:10.1109/ICMMT.2010.5525120

16. Zhang, Q.-J., K. C. Gupta, and V. K. Devabhaktuni, "Artificial neural networks for RF and microwave design - From theory to practice," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1339-1350, 2003.
doi:10.1109/TMTT.2003.809179

17. Rayas-Sanchez, J. E., "EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 420-435, 2004.
doi:10.1109/TMTT.2003.820897

18. Angiulli, G., E. Arnieri, D. De Carlo, and G. Amendola, "Feed forward neural network characterization of circular SIW resonators," IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, USA, 2008.

19. Devabhaktuni, V. K., M. C. E. Yagoub, Y. Fang, J. Xu, and Q.-J. Zhan, "Neural networks for microwave modeling: Model development issues and nonlinear modeling techniques," Int. J. RF Microwave Comput.-Aided Eng., Vol. 11, 4-21, 2001.
doi:10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I

20. Jin, J., C. Zhang, F. Feng, W. Na, J. Ma, and Q. Zhang, "Deep neural network technique for high-dimensional microwave modeling and applications to parameter extraction of microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 10, 4140-4155, 2019.
doi:10.1109/TMTT.2019.2932738

21. Fan, P., R. G. Zhou, and Z. B. Chang, "Novel neural network modelling method and applications," Int. J. RF Microwave Comput.-Aided Eng., Vol. 25, No. 9, 769-779, 2015.
doi:10.1002/mmce.20915