1. Chen, X. and K. Wu, "Substrate integrated waveguide filters: Design techniques and structure innovations," IEEE Microwave Magazine, Vol. 15, No. 6, 121-133, 2014.
doi:10.1109/MMM.2014.2332886
2. Maurizio, B., G. Apostolos, and W. Ke, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas and Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463
3. Krushna Kanth, V. and S. Raghavan, "EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application," J. Comput. Electron., Vol. 18, 189-196, 2019.
doi:10.1007/s10825-018-1272-z
4. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820
5. Muchhal, N., A. Chakraborty, M. Vishwakarma, and S. Srivastava, "Slotted folded substrate integrated waveguide band pass filter with enhanced bandwidth for Ku/K band applications," Progress In Electromagnetics Research M, Vol. 70, 51-60, 2018.
doi:10.2528/PIERM18041804
6. Wu, Y.-D., G. H. Li, W. Yang, and X. Yang, "Design of compact wideband QMSIW band-pass filter with improved stopband," Progress In Electromagnetics Research Letters, Vol. 65, 75-79, 2017.
doi:10.2528/PIERL16110301
7. Tomassoni, C., L. Silvestri, M. Bozzi, and L. Perregrini, "Substrate-integrated waveguide filters based on mushroom-shaped resonators," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 4-5, 741-749, 2016.
doi:10.1017/S1759078716000453
8. Kanth, V. K. and S. V. Raghavan, "Design and development of angularly stable and polarisation rotating FSS radome based on substrate-integrated waveguide technology," IET Microwaves, Antennas and Propagation, Vol. 13, No. 4, 478-484, 2019.
doi:10.1049/iet-map.2018.5386
9. Kanth, V. K. and S. Raghavan, "Design of SIW cavity models to control the bandwidth of frequency selective surface," IET Microwaves, Antennas and Propagation, Vol. 13, No. 14, 2515-2524, 2019.
doi:10.1049/iet-map.2019.0377
10. Danaeian, M., A. G. Ashkezari, K. Afrooz, and A. Hakimi, "A compact wide bandpass filter based on Substrate Integrated Waveguide (SIW) structure," Journal of Communication Engineering, 2015.
11. Hao, Z.-C., W. Hong, J.-X. Chen, X.-P. Chen, and K. Wu, "Compact super-wide bandpass Substrate Integrated Waveguide (SIW) filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2968-2977, 2005.
doi:10.1109/TMTT.2005.854232
12. Chen, P., L. Li, K. Yang, and F. Hua, "Design of substrate integrated plasmonic waveguide bandpass filter with T-shaped spoof surface Plasmon polaritons," Electromagnetics, Vol. 40, No. 8, 563-575, 2020.
doi:10.1080/02726343.2020.1838055
13. Caballero, E. D., H. Esteban, A. Belenguer, V. E. Boria, J. V. Morro, and J. Cascon, "Efficient design of substrate integrated waveguide filters using a hybrid mom/mm analysis method and efficient rectangular waveguide design tools," International Conference on Electromagnetics in Advanced Applications, 456-459, 2011.
14. Chen, R. S., S. Wong, L. Zhu, and Q. Chu, "Wideband bandpass filter using U-slotted Substrate Integrated Waveguide (SIW) cavities," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 1, 1-3, 2015.
doi:10.1109/LMWC.2014.2363291
15. Wang, Y., Y. Fu, Q. Liu, and S. Dong, "Design of asubstrate integrated waveguide bandpass filter using in microwave communication systems," International Conference on Microwave and Millimeter Wave, Technology, 1952-1954, Chengdu, China, 2010.
doi:10.1109/ICMMT.2010.5525120
16. Zhang, Q.-J., K. C. Gupta, and V. K. Devabhaktuni, "Artificial neural networks for RF and microwave design - From theory to practice," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1339-1350, 2003.
doi:10.1109/TMTT.2003.809179
17. Rayas-Sanchez, J. E., "EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 420-435, 2004.
doi:10.1109/TMTT.2003.820897
18. Angiulli, G., E. Arnieri, D. De Carlo, and G. Amendola, "Feed forward neural network characterization of circular SIW resonators," IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, USA, 2008.
19. Devabhaktuni, V. K., M. C. E. Yagoub, Y. Fang, J. Xu, and Q.-J. Zhan, "Neural networks for microwave modeling: Model development issues and nonlinear modeling techniques," Int. J. RF Microwave Comput.-Aided Eng., Vol. 11, 4-21, 2001.
doi:10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I
20. Jin, J., C. Zhang, F. Feng, W. Na, J. Ma, and Q. Zhang, "Deep neural network technique for high-dimensional microwave modeling and applications to parameter extraction of microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 10, 4140-4155, 2019.
doi:10.1109/TMTT.2019.2932738
21. Fan, P., R. G. Zhou, and Z. B. Chang, "Novel neural network modelling method and applications," Int. J. RF Microwave Comput.-Aided Eng., Vol. 25, No. 9, 769-779, 2015.
doi:10.1002/mmce.20915