1. Kovitz, J. M. and Y. Rahmat-Samii, "Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional cp patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 4970-4979, 2014.
doi:10.1109/TAP.2014.2343239
2. Serra, A. A., P. Nepa, G. Manara, G. Tribellini, and S. Cioci, "A wide-band dual-polarized stacked patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 141-143, 2007.
doi:10.1109/LAWP.2007.893101
3. Kim, S. M. and W. G. Yang, "Single feed wideband circular polarised patch antenna," Electronics Letters, Vol. 43, No. 13, 1, 2007.
doi:10.1049/el:20070677
4. Sajin, G. I., "Impedance measurement of millimeter wave metamaterial antennas by transmission line stubs," Progress In Electromagnetics Research Letters, Vol. 26, 59-68, 2011.
doi:10.2528/PIERL11072004
5. Zhang, Y., J. Von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, "Planar artificial magnetic conductors and patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2704-2712, 2003.
doi:10.1109/TAP.2003.817550
6. Nakamura, T. and T. Fukusako, "Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 2103-2110, 2011.
doi:10.1109/TAP.2011.2143656
7. Ghassemi, N. and K. Wu, "High-efficient patch antenna array for e-band gigabyte point-to-point wireless services," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1261-1264, 2012.
doi:10.1109/LAWP.2012.2224087
8. Kim, D.-Y., Y. Lim, H.-S. Yoon, and S. Nam, "High-efficiency W-band electroforming slot array antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1854-1857, 2015.
doi:10.1109/TAP.2015.2398129
9. Esselle, K., A. K. Verma, et al. "Compact circularly polarized enhanced gain microstrip antenna on high permittivity substrate," 2005 Asia-Pacific Microwave Conference Proceedings, Vol. 4, 4, IEEE, 2005.
10. Methfessel, S. and L.-P. Schmidt, "Design of a balanced-fed patch-excited horn antenna at millimeter-wave frequencies," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, IEEE, 2010.
11. Zhu, H., S. W. Cheung, and T. I. Yuk, "Enhancing antenna boresight gain using a small metasurface lens: Reduction in half-power beamwidth," IEEE Antennas and Propagation Magazine, Vol. 58, No. 1, 35-44, 2016.
doi:10.1109/MAP.2015.2501235
12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ϵ and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699
13. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966
14. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, 2007.
doi:10.1038/nphoton.2007.28
15. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, John Wiley & Sons, 2011.
16. Samantaray, D. and S. Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6548-6556, 2020.
doi:10.1109/TAP.2020.2990280
17. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "High-gain and high-aperture efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
doi:10.1109/LAWP.2017.2719864
18. Kim, J. H., C.-H. Ahn, and J.-K. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1164-1167, 2016.
doi:10.1109/TAP.2016.2518650
19. Rajanna, P. K. T., K. Rudramuni, and K. Kandasamy, "A high-gain circularly polarized antenna using zero-index metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1129-1133, 2019.
doi:10.1109/LAWP.2019.2910805
20. Rao, N. and V. D. Kumar, "Gain and bandwidth enhancement of a microstrip antenna using partial substrate removal in multiple-layer dielectric substrate," Progress In Electromagnetics Research Symposium Proceedings, 1285-1289, 2011.
21. Attia, H. and O. M. Ramahi, "EBG superstrate for gain and bandwidth enhancement of microstrip array antennas," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.
22. Nishiyama, E., M. Aikawa, and S. Egashira, "Stacked microstrip antenna for wideband and high gain," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 151, No. 2, 2000.
23. Honari, M. M., A. Abdipour, and G. Moradi, "Bandwidth and gain enhancement of an aperture antenna with modified ring patch," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1413-1416, 2011.
doi:10.1109/LAWP.2011.2178998
24. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on antennas and propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135
25. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002
26. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian J. Radio Sp. Phys., Vol. 40, No. 3, 159-165, 2011.
27. Arora, C., S. S. Pattnaik, and R. N. Baral, "Metamaterial inspired DNG superstrate for performance improvement of microstrip patch antenna array," Progress In Electromagnetics Research B, Vol. 76, 73-85, 2017.
doi:10.2528/PIERB17041405