Vol. 130
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-02-21
Performance Enhancement of Patch Antenna Using RIS and Metamaterial Superstrate for Wireless Applications
By
Progress In Electromagnetics Research C, Vol. 130, 95-105, 2023
Abstract
This paper proposes a single feed circularly polarised patch antenna with reactive impedance surface (RIS) and metamaterial superstrate (MS) to improve bandwidth and gain for Wi-Fi and Wi-Max applications that demand high gain, wide band, and directional antennas. In this paper, we demonstrate the performance of several antenna designs, including a slot-loaded patch on a single substrate, an antenna on a dual layer substrate with RIS, and an antenna with RIS and MS. The cavity formed by the superstrate and antenna ground plane functions as a Fabry-Perot resonator (FPR) that enhances bandwidth and gain simultaneously. The final optimised antenna has a significantly wider impedance bandwidth (IBW) of 17.32% (5.01 GHz - 5.96 GHz) and an axial ratio bandwidth (ARBW) of 6.29% (5.23 GHz-5.57 GHz) than the conventional slot loaded patch antenna. The proposed antenna gain is 11.73 dB, which is around 9 dB increase over the gain of a standard antenna.
Citation
Swapna Kumari Budarapu, Metuku Shyam Sunder, and Bollapragada Ramakrishna, "Performance Enhancement of Patch Antenna Using RIS and Metamaterial Superstrate for Wireless Applications," Progress In Electromagnetics Research C, Vol. 130, 95-105, 2023.
doi:10.2528/PIERC22112603
References

1. Kovitz, J. M. and Y. Rahmat-Samii, "Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional cp patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 4970-4979, 2014.
doi:10.1109/TAP.2014.2343239

2. Serra, A. A., P. Nepa, G. Manara, G. Tribellini, and S. Cioci, "A wide-band dual-polarized stacked patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 141-143, 2007.
doi:10.1109/LAWP.2007.893101

3. Kim, S. M. and W. G. Yang, "Single feed wideband circular polarised patch antenna," Electronics Letters, Vol. 43, No. 13, 1, 2007.
doi:10.1049/el:20070677

4. Sajin, G. I., "Impedance measurement of millimeter wave metamaterial antennas by transmission line stubs," Progress In Electromagnetics Research Letters, Vol. 26, 59-68, 2011.
doi:10.2528/PIERL11072004

5. Zhang, Y., J. Von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, "Planar artificial magnetic conductors and patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2704-2712, 2003.
doi:10.1109/TAP.2003.817550

6. Nakamura, T. and T. Fukusako, "Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 2103-2110, 2011.
doi:10.1109/TAP.2011.2143656

7. Ghassemi, N. and K. Wu, "High-efficient patch antenna array for e-band gigabyte point-to-point wireless services," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1261-1264, 2012.
doi:10.1109/LAWP.2012.2224087

8. Kim, D.-Y., Y. Lim, H.-S. Yoon, and S. Nam, "High-efficiency W-band electroforming slot array antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1854-1857, 2015.
doi:10.1109/TAP.2015.2398129

9. Esselle, K., A. K. Verma, et al. "Compact circularly polarized enhanced gain microstrip antenna on high permittivity substrate," 2005 Asia-Pacific Microwave Conference Proceedings, Vol. 4, 4, IEEE, 2005.

10. Methfessel, S. and L.-P. Schmidt, "Design of a balanced-fed patch-excited horn antenna at millimeter-wave frequencies," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, IEEE, 2010.

11. Zhu, H., S. W. Cheung, and T. I. Yuk, "Enhancing antenna boresight gain using a small metasurface lens: Reduction in half-power beamwidth," IEEE Antennas and Propagation Magazine, Vol. 58, No. 1, 35-44, 2016.
doi:10.1109/MAP.2015.2501235

12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ϵ and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

13. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

14. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, 2007.
doi:10.1038/nphoton.2007.28

15. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, John Wiley & Sons, 2011.

16. Samantaray, D. and S. Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6548-6556, 2020.
doi:10.1109/TAP.2020.2990280

17. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "High-gain and high-aperture efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
doi:10.1109/LAWP.2017.2719864

18. Kim, J. H., C.-H. Ahn, and J.-K. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1164-1167, 2016.
doi:10.1109/TAP.2016.2518650

19. Rajanna, P. K. T., K. Rudramuni, and K. Kandasamy, "A high-gain circularly polarized antenna using zero-index metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1129-1133, 2019.
doi:10.1109/LAWP.2019.2910805

20. Rao, N. and V. D. Kumar, "Gain and bandwidth enhancement of a microstrip antenna using partial substrate removal in multiple-layer dielectric substrate," Progress In Electromagnetics Research Symposium Proceedings, 1285-1289, 2011.

21. Attia, H. and O. M. Ramahi, "EBG superstrate for gain and bandwidth enhancement of microstrip array antennas," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.

22. Nishiyama, E., M. Aikawa, and S. Egashira, "Stacked microstrip antenna for wideband and high gain," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 151, No. 2, 2000.

23. Honari, M. M., A. Abdipour, and G. Moradi, "Bandwidth and gain enhancement of an aperture antenna with modified ring patch," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1413-1416, 2011.
doi:10.1109/LAWP.2011.2178998

24. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on antennas and propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135

25. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

26. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian J. Radio Sp. Phys., Vol. 40, No. 3, 159-165, 2011.

27. Arora, C., S. S. Pattnaik, and R. N. Baral, "Metamaterial inspired DNG superstrate for performance improvement of microstrip patch antenna array," Progress In Electromagnetics Research B, Vol. 76, 73-85, 2017.
doi:10.2528/PIERB17041405