Vol. 129
Latest Volume
All Volumes
PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-29
Design and Experimental Verification of Variable Flux Permanent Magnet Vernier Machine Using Time-Stepping Finite Element Method
By
Progress In Electromagnetics Research C, Vol. 129, 115-126, 2023
Abstract
A novel variable flux permanent magnet vernier machine (VFPMVM) is proposed by introducing the concept of hybrid excitation, and its flux modulation poles (FMPs) and excitation winding are emplaced in stator teeth and the adjacent FMPs, respectively. It can offer several merits, such as wide speed range operation through the processing of flux-enhancing and flux-weakening without increasing machine bulk, as well as the numbers of stator slot and rotor pole. Moreover, as one sort of flux modulation machine based on magnetic field modulation effect, VFPMVM features low speed, large torque, simpler mechanical structure and better utilization of PM materials than traditional flux modulation machines. The working principle of proposed machine is studied, and basic electromagnetic characteristics are calculated by finite element method, including no-load magnetic flux linkage, no-load back electromotive force, cogging torque, and output torque. In addition, the processes of flux-enhancing and flux-weakening are analyzed. Finally, one prototype with one kilowatt was built, and its static characteristics were tested. The results show that the proposed VFPMVM has the merits of high torque density, small cogging torque, and wide speed range, which is a promising candidate for electric vehicle direct drive field.
Citation
Yang Zhang, Jiming Luo, Mingming Huang, Quanzhen Huang, and Duane Decker, "Design and Experimental Verification of Variable Flux Permanent Magnet Vernier Machine Using Time-Stepping Finite Element Method," Progress In Electromagnetics Research C, Vol. 129, 115-126, 2023.
doi:10.2528/PIERC22112102
References

1. Chan, C. C., K. T. Chau, and J. Z. Jiang, "Novel permanent magnet motor drives for electric vehicles," IEEE Trans. Ind. Electr., Vol. 43, No. 2, 331-339, 1996.
doi:10.1109/41.491357

2. Chan, C. C., "The state of the art of electric, hybrid, and fuel cell vehicles," Proc. of the IEEE, Vol. 95, No. 4, 704-718, 2007.
doi:10.1109/JPROC.2007.892489

3. Zhu, Z. Q. and D. Evans, "Overview of recent advances in innovative electrical machines with reference to magnetically geared switched flux machines," Proceedings of International Conference on Electrical Machines and Systems, 1-10, 2014.

4. Amara, Y., J. Lucidarme, M. Gabsi, M. Lécrivain, A. Hamid, B. Ahmed, and A. D. Akémakou, "A new topology of hybrid synchronous machine," IEEE Trans. Ind. Appl., Vol. 37, No. 5, 1273-1278, 2001.
doi:10.1109/28.952502

5. Wang, L. L., J. X. Shen, P. C. K. Luk, W. Z. Fei, C. F. Wang, and H. Hao, "Development of a magnetic-geared permanent-magnet brushless motor," IEEE Trans. Magn., Vol. 45, No. 10, 4578-4581, 2001.
doi:10.1109/TMAG.2009.2023071

6. Toba, A. and T. A. Lipo, "Generic torque-maximizing design methodology of the surface permanent magnet vernier machine," IEEE Trans. Ind. Appl., Vol. 36, No. 6, 1539-1546, 2000.
doi:10.1109/28.887204

7. Chau, K. T., D. Zhang, J. Z. Jiang, C. Liu, and Y. Zhang, "Design of a magnetic-geared outer-rotor permanent-magnetic brushless motor for electric vehicles," IEEE Trans. Magn., Vol. 43, No. 6, 2504-2506, 2007.
doi:10.1109/TMAG.2007.893714

8. Jian, L. N. and K. T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Electromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301

9. Jian, L. N. and K. T. Chau, "Design and analysis of a magnetic-geared electronic-continuously variable transmission system using finite element method," Progress In Electromagnetics Research, Vol. 107, 47-61, 2010.
doi:10.2528/PIER10062806

10. Jian, L. N., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time-stepping finite element method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011.
doi:10.2528/PIER10121603

11. Jian, L. N., G. Xu, J. Song, H. Xue, and D. Zhao, "Optimum design for improving modulating-effect of coaxial magnetic gear using response surface methodology and genetic algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.
doi:10.2528/PIER11032316

12. Xu, G., L. N. Jian, W. Gong, and W. Zhao, "Quantitative comparison of flux-modulated interior permanent magnet machines with distributed windings and concentrated windings," Progress In Electromagnetics Research, Vol. 129, 109-123, 2012.
doi:10.2528/PIER12040901

13. Li, J. G., K. T. Chau, J. Z. Jiang, C. H. Liu, and W. Li, "A new efficient permanent-magnet vernier machine for wind power generation," IEEE Trans. Magn., Vol. 46, No. 6, 1475-1478, 2010.
doi:10.1109/TMAG.2010.2044636

14. Jian, L. N., J. N. Liang, Y. J. Shi, and G. Xu, "A novel double-winding permanent magnet flux modulated machine for stand-alone wind power generation," Progress In Electromagnetics Research, Vol. 142, 275-289, 2013.
doi:10.2528/PIER13072304

15. Kong, W. Q., Y. Zhang, M. M. Huang, and Q. Z. Huang, "Flux concentrating multi-tooth splitting poles permanent magnet vernier machine cogging torque optimization and experimental verification," INT J. Appl. Electrom, Vol. 56, No. 4, 1-12, 2018.

16. Xu, L., W. X. Zhao, G. H. Liu, and C. Song, "Design optimization of a spoke-type permanent-magnet vernier machine for torque density and power factor improvement," IEEE Trans. Veh. Technol., Vol. 68, No. 4, 3446-3456, 2019.
doi:10.1109/TVT.2019.2902729

17. Zhang, Y., D. Li, P. Yan, X. Ren, and J. Ma, "A high torque density claw pole permanent-magnets vernier machine," IEEE Trans. Ind. Electron., Vol. 10, No. 2, 1756-1765, 2022.

18. Guan, Q., Y. T. Fang, and P. D. Pfister, "A novel concentrated-winding vernier pseudo-direct-drive permanent-magnet machine," IEEE Trans. Magn., Vol. 58, No. 2, 8103805, 2022.

19. Wu, L. L. and R. H. Qu, "A novel dual-stator vernier permanent magnet machine with improved power factor," IEEE Trans. Ind. Appl., Vol. 58, No. 3, 3486-3496, 2022.
doi:10.1109/TIA.2022.3155540

20. Li, X. L., K. T. Chau, and M. Cheng, "Analysis, design and experimental verification of a field-modulated permanent-magnet machine for direct-drive wind turbines," IET Electr. Power Appl., Vol. 9, No. 2, 150-159, 2015.
doi:10.1049/iet-epa.2014.0156

21. Yang, H., H. Y. Lin, Z. Q. Zhu, S. H. Fang, and Y. K. Huang, "Novel flux-regulatable dual-magnet vernier memory machines for electric vehicle propulsion," IEEE Trans. Appl. Supercond., Vol. 24, No. 5, 0601205, 2014.
doi:10.1109/TASC.2014.2351259

22. Zhang, Y., H. Y. Lin, S. H. Fang, and Y. K. Huang, "Comparison and analysis of dual stator permanent magnet vernier machines with different pole/slot combinations for low speed direct drive applications," Int J. Appl. Electrom., Vol. 50, 617-626, 2016.

23. Liu, C. H., J. Zhong, and K. T. Chau, "A novel flux-controllable vernier permanent-magnet machine," IEEE Trans. Magn., Vol. 47, No. 10, 4238-4241, 2011.
doi:10.1109/TMAG.2011.2152374

24. Amara, Y., L. Vido, M. Gabsi, E. Hoang, and B. Hamid, "Hybrid excitation synchronous machines: Energy-efficient solution for vehicles propulsion," IEEE Trans. Veh. Technol., Vol. 58, No. 5, 2137-2149, 2009.
doi:10.1109/TVT.2008.2009306

25. Zhang, Y., Q. Z. Huang, and M. M. Huang, "Design and experimental verification of adaptive speed region control for hybrid excitation claw-pole synchronous machine," Progress In Electromagnetics Research C, Vol. 88, 195-205, 2018.
doi:10.2528/PIERC18092603