Vol. 128
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-03
Design and Analysis of Multi-Layer Coils to Enhance Performance of Spread Resonance Based MI Waveguide System
By
Progress In Electromagnetics Research C, Vol. 128, 113-127, 2023
Abstract
In this work, we analytically enhanced the channel capacity and bandwidth of an MI waveguide system by using multi-layer coils (MLCs) and spread resonance strategy. In this analysis, we considered the practical constraints like parasitic capacitance, ac resistance, skin and proximity effects and inductance of multi-layer coil. The bandwidth is significantly enhanced up to 6 KHz, and a trade-off is observed between the bandwidth and achievable transmission range. Besides, the influence of coil turns, layers and the impact of spread intensity are analyzed. Furthermore, we introduced a new MLC structure with thin-rectangular cross section which has promising characteristics like higher magnetic flux, low ac resistance, and high inductance. The performance of this coil is compared with that of existing round circular and tubular multi-layer coils. These characteristics are comparatively studied through simulations performed in ANSYS Maxwell R21. Based on the results we infer that the proposed coil is more advantageous than the existing standard MLC for MI communication in terms of cost and system performance.
Citation
Sandeep N. Dandu, Vinay Kumar, and Joydeep Sengupta, "Design and Analysis of Multi-Layer Coils to Enhance Performance of Spread Resonance Based MI Waveguide System," Progress In Electromagnetics Research C, Vol. 128, 113-127, 2023.
doi:10.2528/PIERC22110909
References

1. Sharma, A. K., S. Yadav, S. N. Dandu, V. Kumar, J. Sengupta, Sanjay B. Dhok, and S. Kumar, "Magnetic induction-based non-conventional media communications: A review," IEEE Sensors Journal, Vol. 17, No. 4, 926-940, 2016.

2. Sandeep, D. N. and V. Kumar, "Review on clustering, coverage and connectivity in underwater wireless sensor networks: A communication techniques perspective," IEEE Access, Vol. 5, 11176-11199, 2017.
doi:10.1109/ACCESS.2017.2713640

3. Sun, Z., P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan, and I. F. Akyildiz, "Misepipe: Magnetic induction-based wireless sensor networks for underground pipeline monitoring," Ad Hoc Networks, Vol. 9, No. 3, 218-227, 2011.
doi:10.1016/j.adhoc.2010.10.006

4. Sun, Z., P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan, and I. F. Akyildiz, "Bordersense: Border patrol through advanced wireless sensor networks," Ad Hoc Networks, Vol. 9, No. 3, 468-477, 2011.
doi:10.1016/j.adhoc.2010.09.008

5. Sun, Z. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Transactions on Communications, Vol. 58, No. 6, 1758-1768, 2010.
doi:10.1109/TCOMM.2010.06.080353

6. Kumar, V., R. Bhusari, S. B. Dhok, A. Prakash, R. Tripathi, and S. Tiwari, "Design of magnetic induction based energy-efficient wsns for nonconventional media using multilayer transmitter-enabled novel energy model," IEEE Systems Journal, Vol. 10, No. 2, 1285-1296, 2018.
doi:10.1109/JSYST.2018.2852487

7. Tambe, S., V. Kumar, and R. Bhusari, "Magnetic induction based cluster optimization in non-conventional WSNs: A cross layer approach," AEU-International Journal of Electronics and Communications, Vol. 93, 53-62, 2018.

8. Sun, Z. and I. F. Akyildiz, "Magnetic induction communications for wireless underground sensor networks," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2426-2435, 2010.
doi:10.1109/TAP.2010.2048858

9. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waveguide," Electronics Letters, Vol. 38, No. 8, 371-373, 2002.
doi:10.1049/el:20020258

10. Dandu, S. N., V. Kumar, J. Sengupta, and N. D. Bokde, "Performance analysis of multilayer coil based mi waveguide communication system," Computers, Materials Continua, Vol. 72, 5287-5300, 2022.
doi:10.32604/cmc.2022.026390

11. Kisseleff, S., I. F. Akyildiz, and W. H. Gerstacker, "Throughput of the magnetic induction based wireless underground sensor networks: Key optimization techniques," IEEE Transactions on Communications, Vol. 62, No. 12, 4426-4439, 2014.
doi:10.1109/TCOMM.2014.2367030

12. Kisseleff, S., W. Gerstacker, R. Schober, Z. Sun, and I. F. Akyildiz, "Channel capacity of magnetic induction based wireless underground sensor networks under practical constraints," 2013 IEEE Wireless Communications and Networking Conference (WCNC), 2603-2608, 2013.
doi:10.1109/WCNC.2013.6554972

13. Sun, Z. and I. F. Akyildiz, "On capacity of magnetic induction-based wireless underground sensor networks," 2012 Proceedings IEEE INFOCOM, 370-378, 2012.
doi:10.1109/INFCOM.2012.6195774

14. Sun, Z., I. F. Akyildiz, S. Kisseleff, and W. Gerstacker, "Increasing the capacity of magnetic induction communications in RF-challenged environments," IEEE Transactions on Communications, Vol. 61, No. 9, 3943-3952, 2013.
doi:10.1109/TCOMM.2013.071813.120600

15. Etemadrezaei, M., "High quality factor resonators for inductive power transfer systems,", North Carolina State University, 2015.

16. Kim, J., B. Kim, J. Kang, and K. Kim, "A novel method for estimating multilayer coil inductance," IEEE Magnetics Letters, Vol. 8, 1-4, 2017.

17. Kim, J., K. Kim, B. Kim, and J. Kang, "Experimental validation of multi-layer coil inductance estimation method," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1303-1304, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8072694

18. Massarini, A., M. K. Kazimierczuk, and G. Grandi, "Lumped parameter models for single- and multiple-layer inductors," PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, Vol. 1, 295-301, 1996.
doi:10.1109/PESC.1996.548595

19. Wojda, R. P., "Winding resistance and winding power loss of high-frequency power inductors,", 2012.

20. Kaymak, M., Z. Shen, and R. W. De Doncker, "Comparison of analytical methods for calculating the ac resistance and leakage inductance of medium-frequency transformers," 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), 1-8, 2016.

21. Lotfi, A. W., P. M. Gradzki, and F. C. Lee, "Proximity effects in coils for high frequency power applications," IEEE Transactions on Magnetics, Vol. 28, No. 5, 2169-2171, 1992.
doi:10.1109/20.179432

22. Pantic, Z. and S. Lukic, "Computationally-efficient, generalized expressions for the proximity-effect in multi-layer, multi-turn tubular coils for wireless power transfer systems," IEEE Transactions on Magnetics, Vol. 49, No. 11, 5404-5416, 2013.
doi:10.1109/TMAG.2013.2264486

23. Alabakhshizadeh, A. and O.-M. Midtgxard, "Optimum core dimension for minimizing proximity effect losses of an AC inductor for a galvanically isolated pv inverter," 2012 38th IEEE Photovoltaic Specialists Conference, 001373-001377, 2012.
doi:10.1109/PVSC.2012.6317855

24. Brennan, T., "Proximity-effect loss calculations for a discontinuous-mode PFC inductor utilising a multifilar winding construction," IEE Proceedings-Electric Power Applications, Vol. 152, No. 5, 1101-1105, 2005.
doi:10.1049/ip-epa:20045267