Vol. 128
Latest Volume
All Volumes
PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-05
Microstrip Feed Line Characterization for Parabolic Reflector Antenna System Using Open-Loop Characterization Approach
By
Progress In Electromagnetics Research C, Vol. 128, 143-154, 2023
Abstract
Aperture efficiency determines the percentage of radiation power incident upon the antenna available at the feed-point. Because the geometry of reflector is fixed, the behavior is primarily a function of the feed. The feed line that connects (transmit/receive) RF to the feed becomes an integral part of the system, so achieving maximum aperture efficiency depends on the capacity of feed line. This paper proposes a microstrip feed line behavioral model for parabolic reflector antenna systems, using an open loop characterization approach. Dielectric material loss intensity varies from material to material. This is consequently used for the effective design of feed line, because characteristic impedance of transmission line varies with material type and the material properties. This causes the reflection loss due to mismatched impedance at the source and load. Loss tangential factor of each material has significant effect on the loss profile. The developed model is analyzed with losses of the feed pattern, and the distance between the edge and the vertex. The proposed attenuation factor can be used to predict loss intensity per feed line length, at different terrestrial and satellite communications frequency bands.
Citation
Oluwole John Famoriji, and Thokozani Shongwe, "Microstrip Feed Line Characterization for Parabolic Reflector Antenna System Using Open-Loop Characterization Approach," Progress In Electromagnetics Research C, Vol. 128, 143-154, 2023.
doi:10.2528/PIERC22110206
References

1. Rohrdantz, B., T. Jaschke, T. Reuschel, S. Radzijewski, A. Sieganschin, and A. F. Jacob, "An electronically scannable reflector antenna using a planar active array feed at Ka-band," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 5, 1650-1661, May 2017.
doi:10.1109/TMTT.2017.2663402

2. Dubok, A., G. Gerini, and A. B. Smolders, "Extreme scanning double shape-reflector antenna with multiple interactions for focal plane array applications," IEEE Trans. Antenna Prop., Vol. 68, No. 7, 5686-5690, Jan. 2020.
doi:10.1109/TAP.2019.2963617

3. Wu, Q., X. Jiang, and C. Zhang, "Attenuation of orbital angular momentum beam transmission with a parabolic antenna," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 10, 1849-1853, Jul. 2021.
doi:10.1109/LAWP.2021.3094978

4. Rohrdantz, B., K. Kuhlmann, A. Stark, A. Geise, and A. F. Jacob, "Digital beamforming antenna array with polarization multiplexing for mobile high-speed satellite terminal at Ka-band," J. Eng., Vol. 1, No. 1, 9, Feb. 2016.
doi:10.31186/jenggano.1.1.9-17

5. Famoriji, O. J., S. Yang, Y. Li, W. Chen, A. Fadamiro, Z. Zhang, and F. Lin, "Design of a simple circularly polarized dual-frequency reconfigurable microstrip patch antenna array for millimeter-wave applications," IET Microwave, Antennas & Propagation, Vol. 13, No. 10, 1671-1677, Aug. 2019.
doi:10.1049/iet-map.2018.5973

6. Debbarma, K., N. Truong, S. K. Sharma, and J. S. Chieh, "2-D beam steering performance of a triple mode horn antenna integrated with risley prism and phase correcting surface," IEEE Open Journal of Antennas Prop., Vol. 3, 752-761, Jun. 2022.
doi:10.1109/OJAP.2022.3187373

7. Clarricoats, P. J. B. and A. D. Olver, "Corrugated horns for microwave antennas," Peter Peregrinus, London, U.K., 1994.

8. Kildal, P. S. and S. A. Skyttemyr, "Dipole-disk antenna with beam-forming ring," IEEE Trans. Antennas Propag., Vol. 30, No. 4, 529-534, 1982.
doi:10.1109/TAP.1982.1142875

9. Cutler, C. C., "Parabolic-antenna design for microwaves," Proc. IRE, Vol. 35, No. 11, 1284-1294, 1947.
doi:10.1109/JRPROC.1947.233571

10. Poulton, G. T. and T. S. Bird, "Improved rear-radiating waveguide cup feeds," Proc. IEEE Antennas Propag. Int. Symp., Mill Valley, CA, Vol. 1, 79{82, 1986.

11. Famoriji, O. J., K. F. Akingbade, E. O. Ogunti, W. Apena, A. Fadamiro, and F. Lin, "Analysis of phased array antenna system via spherical harmonics decomposition," IET Communications, Vol. 13, No. 18, 3097-3104, Nov. 2019.
doi:10.1049/iet-com.2018.5460

12. Hansen, J., A. A. Kishk, P.S. Kildal, and O. Dahlsjo, "High performance reflector hat antenna with very low sidelobes for radio-link applications," Proc. Antennas Propag. Soc. Int. Symp., Vol. 2, 893-896, 1995.

13. James, G. L. and D. P. S. Malik, "Towards the theoretical design of splash-plate feeds," Electron. Lett., Vol. 11, No. 24, 593-594, 1975.
doi:10.1049/el:19750453

14. Newham, P., "A high efficiency splash plate feed for small reflector antennas," Proc. IEEE Antennas Propag. Int. Symp., 420-423, 1985.

15. Pozarand, D. M. and D. Schaubert, "Microstrip antennas: the analysis and design of microstrip antennas and arrays," Institute of Electrical Engineers, London, U.K., 1994.

16. Qudrat-E-Maula, M. and L. Shafai, "Low-cost, microwave-fed printed dipole for prime focus reflector feed," IEEE Trans. Antenna Prop., Vol. 60, No. 11, 5428-5433, Nov. 2012.
doi:10.1109/TAP.2012.2208170

17. Love, A. W., "Reflector antennas," IEEE Press, New York, 1978.

18. Balanis, C. A., "Antenna theory, analysis and design," John Wiley & Sons, Inc., 3rd Edition, Hoboken, New Jersey, 2005.

19. Famoriji, O. J., X. Yan, M. Khan, R. Kashif, A. Fadamiro, Md S. Ali, and F. Lin, "Wireless interconnect in multilayer chip-area-network for future multimaterial high-speed," Wireless Communications and Mobile Computing, Vol. Article ID 6083626, 2017, 2017.

20. Rahmat-Samii, Y. and R. Haupt, "Reflector antenna developments: A perspective on the past, present and future," IEEE Antennas Propag. Mag., Vol. 57, No. 2, 85-95, Sep. 2015.
doi:10.1109/MAP.2015.2414534

21. Ivashina, M. V., M. N. M. Kehn, P Kildal, and R. Maaskant, "Decoupling efficiency of a wideband Vivaldi focal plane array feeding a reflector antenna," IEEE Trans. Antenna Prop., Vol. 57, No. 12, 373-382, Feb. 2009.
doi:10.1109/TAP.2008.2011184

22. Hosseini, A., S. Kabiri, and F. D. Flaviis, "V-band high-gain printed quasi-parabolic reflector antenna with beam-steering," IEEE Trans. Antenna Prop., Vol. 65, No. 4, 1589-1598, Apr. 2017.
doi:10.1109/TAP.2017.2670324

23. Silver, S., "Microwave antenna theory and design," McGraw-Hill MIT Radiation Lab. Series, Vol. 12, New York, 1949.

24. Famoriji, O. J., X. Yan, M. Khan, R. Kashif, A. Fadamiro, Md S. Ali, and F. Lin, "Wireless interconnect in multilayer chip-area-network for future multimaterial high-speed," Wireless Communications and Mobile Computing, Vol. 2017, Article ID 6083626, 2017.

25. Pozar, D. M., "Microwave engineering," John Wiley and Sons, INC, 2nd Edition, 1998.

26. Schnieder, F. and W. Heinrich, "Model of thin-film microstrip line for circuit design," IEEE Trans. on Microwave Theory and Techn., Vol. 49, 104-110, Jan. 2001.
doi:10.1109/22.899967