Vol. 128
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-29
Localization in Multiple-Input Multiple Output Systems Based on Passive Repeaters
By
Progress In Electromagnetics Research C, Vol. 128, 49-60, 2023
Abstract
This paper presents a novel localization method in multiple-input multiple-output (MIMO) systems based on the implementation of passive repeaters. In addition to their ability to enhance performance in MIMO systems by enriching scattering in line-of-sight MIMO environments, and extending coverage area and accessing blind spots in none line-of-sight MIMO environments, passive repeaters can help in localizing users by taking advantage of their spreading in the communication environments. In the proposed method, the target area is divided into a grid. Each location in this grid has a unique field interference created by repeaters. Because of the unique field interference, each location causes a unique field signature at the base station when a user in that location transmits signals. The field signature corresponding to the center of each grid cell is used as a fingerprint for localizing users in that cell, and for all cells, a bank of matched filters corresponding to all stored fingerprints is constructed. Using only the spatial coherence of the measured fields, there is no need for synchronization between users and the base station. When a signal arrives at the base station, the generated field signature is correlated with the bank of matched filters, and the location is determined based on the maximum correlation value. The numerical analysis is performed to verify the validity of the proposed method, and it is found that by means of passive repeaters, the user location can be determined with no need of calculating additional parameters.
Citation
Mahmoud Eissa, and Dmitry Y. Sukhanov, "Localization in Multiple-Input Multiple Output Systems Based on Passive Repeaters," Progress In Electromagnetics Research C, Vol. 128, 49-60, 2023.
doi:10.2528/PIERC22103102
References

1. Gustafsson, F. and F. Gunnarsson, "Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements," IEEE Signal Processing Magazine, Vol. 22, No. 4, 41-53, 2005.
doi:10.1109/MSP.2005.1458284

2. So, H. C., Y. T. Chan, and F. K. W. Chan, "Closed-form formulae for time difference-of-arrival estimation," IEEE Transactions on Signal Processing, Vol. 56, No. 6, 2614-2620, Jun. 2008.
doi:10.1109/TSP.2007.914342

3. Tonello, A. M. and D. Inserra, "Radio positioning based on DoA estimation: An implementation perspective," Proc. IEEE Int. Conf. Commun. Workshops (ICC), 27-31, Jun. 2013.

4. Inserra, D. and A. M. Tonello, "A multiple antenna wireless testbed for the validation of DoA estimation algorithms," AEU-Int. J. Electron. Commun., Vol. 68, No. 1, 10-18, Jan. 2014.
doi:10.1016/j.aeue.2013.07.001

5. Laurijssen, D., J. Steckel, and M. Weyn, "Antenna arrays for RSS based indoor localization systems," Proc. IEEE SENSORS, 261-264, Nov. 2014.

6. Lv, T., F. Tan, H. Gao, and S. Yang, "A beamspace approach for 2-D localization of incoherently distributed sources in massive MIMO systems," Signal Process., Vol. 121, 30-45, 2016.
doi:10.1016/j.sigpro.2015.10.020

7. Rupp, M. and S. Schwarz, "An LS localisation method for massive MIMO transmission systems," ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4375-4379, 2019.
doi:10.1109/ICASSP.2019.8682509

8. Savic, V. and E. G. Larsson, "Fingerprinting-based positioning in distributed massive MIMO systems," Proc. IEEE 82nd Veh. Technol. Conf.1 (VTC2015-Fall), 1-5, 2015.

9. Moosavi, S. S. and P. Fortier, "Fingerprinting positioning in distributed massive MIMO systems using affinity propagation clustering and gaussian process regression," Wireless Personal Communications, Vol. 121, 1835-1855, 2021.
doi:10.1007/s11277-021-08741-4

10. Shaikh, S. A. and A. M. Tonello, "Radio source localization in multipath channels using EM lens assisted massive antennas arrays," IEEE Access, Vol. 7, 9001-9012, 2019.
doi:10.1109/ACCESS.2019.2891110

11. Dong, F., W. Wang, Z. Huang, and P. Huang, "High-resolution angle of-arrival and channel estimation for mmWave massive MIMO systems with lens antenna array," IEEE Trans. Veh. Technol., Vol. 69, No. 11, 12963-12973, Nov. 2020.
doi:10.1109/TVT.2020.3016671

12. Zhao, Y., W. Qi, P. Liu, L. Chen, and J. Lin, "Accurate 3D localisation of mobile target using single station with AoA-TDoA measurements," IET Radar Sonar and Navigation., Vol. 14, No. 6, 954-965, 2020.
doi:10.1049/iet-rsn.2019.0600

13. Garcia, N., H. Wymeersch, E. G. Larsson, A. M. Haimovich, and M. Coulon, "Direct localization for massive MIMO," IEEE Trans. Signal Process., Vol. 65, No. 10, 2475-2487, May 2017.
doi:10.1109/TSP.2017.2666779

14. Zhao, H., N. Zhang, and Y. Shen, "Beamspace direct localization for large-scale antenna array systems," IEEE Trans. Signal Process., Vol. 68, No. 6, 3529-3544, May 2020.
doi:10.1109/TSP.2020.2996155

15. Hong, J. and T. Ohtsuki, "Signal eigenvector-based device-free passive localization using array sensor," IEEE Trans. Veh. Technol., Vol. 64, No. 4, 1354-1363, Apr. 2015.
doi:10.1109/TVT.2015.2397436

16. Kan, C., G. Ding, Q. Wu, and T. Zhang, "Robust localization with crowd sensors: a data cleansing approach," Mobile Networks and Applications., Vol. 23, No. 1, 108-118, 2018.
doi:10.1007/s11036-017-0888-8

17. Godrich, H., A. M. Haimovich, and R. S. Blum, "Target localization accuracy gain in MIMO radar-based systems," IEEE Transactions on Information Theory, Vol. 56, 2783-2803, 2010.
doi:10.1109/TIT.2010.2046246

18. Honma, N., Y. Takahashi, and Y. Tsunekawa, "Manipulating MIMO propagation environment using tunable passive repeater," Proc. of IEEE Asia-Pacific Microwave Conference (APMC), 504-506, 2014.

19. Ha, D., D. Choi, H. Kim, J. Kum, J. Lee, and Y. Lee, "Passive repeater for removal of blind spot in NLOS path for 5G fixed wireless access (FWA) system," IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 2049-2050, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8073067

20. Sukhanov, D. Y. and M. Eissa, "Manipulating LOS and NLOS MIMO propagation environments using passive repeaters," Progress In Electromagnetics Research M, Vol. 105, 195-204, 2021.
doi:10.2528/PIERM21061602

21. Eissa, M. and D. Sukhanov, "Enhancing performance in a LOS MIMO communication using a passive repeater," Journal of Physics: Conference Series, Vol. 2140, 012013, 2021.
doi:10.1088/1742-6596/2140/1/012013

22. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, Rutgers University, 2016.

23. Minoli, D., Satellite Systems Engineering in an IPv6 Environment, CRC Press, 2009.
doi:10.1201/9781420078695