Vol. 127
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-13
An Embroidered Slot-Loaded Patch Antenna for Characterization of Dielectric Materials
By
Progress In Electromagnetics Research C, Vol. 127, 183-193, 2022
Abstract
Embroidery has been recently introduced as a new method to realize sensors especially for wearables. In this paper, we present a slot-loaded embroidered patch antenna to provide a simplified setup which allows the antenna to act as a stand-alone resonator. The design procedure, simulation and implementation of an embroidered sensor are presented and discussed. It is demonstrated that this structure can be used without any need for external antennas as a wireless sensor. To demonstrate the feasibility of this technique, the design process using a slot-loaded antenna to achieve a high Q antenna, fabricated on an FR4 substrate, is presented and discussed. This structure is then manufactured, with practical results shown to agree with simulated results. Using this as a basis for subsequent designs, an embroidered slot-loaded patch is presented and discussed. We demonstrate this capability in an experiment where a set of solvents inside plastic bottles were interrogated using the embroidered antennas.
Citation
Michael Elsdon, Shahrzad Zahertar, Hamdi Torun, and Linzi E. Dodd, "An Embroidered Slot-Loaded Patch Antenna for Characterization of Dielectric Materials," Progress In Electromagnetics Research C, Vol. 127, 183-193, 2022.
doi:10.2528/PIERC22102803
References

1. Linz, T., C. Kallmayer, R. Aschenbrenner, and H. Reichl, "Embroidering electrical interconnects with conductive yarn for the integration of flexible electronic modules into fabric," Proc. --- Int. Symp. Wearable Comput. ISWC, Vol. 2005, 86-89, 2005, doi: 10.1109/ISWC.2005.19.
doi:10.1109/ISWC.2005.19

2. Weder, M., D. Hegemann, M. Amberg, et al. "Embroidered electrode with silver/titanium coating for long-term ECG monitoring," Sensors 2015, Vol. 15, No. 1, 1750-1759, Jan. 2015, doi: 10.3390/S150101750.

3. Logothetis, I., D. Vatansever Bayramol, I. Gil, Dabnichki, and E. Pirogova, "Evaluating silver-plated nylon (Ag/PA66) e-textiles for bioelectrical impedance analysis (BIA) application," Meas. Sci. Technol., Vol. 31, No. 7, Jul. 2020, doi: 10.1088/1361-6501/AB78C3.

4. Aigner, R., A. Pointner, T. Preindl, Parzer, and M. Haller, "Embroidered resistive pressure sensors: A novel approach for textile interfaces," Conf. Hum. Factors Comput. Syst. --- Proc., Apr. 2020, doi: 10.1145/3313831.3376305.

5. Atalay, O., W. R. Kennon, and E. Demirok, "Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modelling," IEEE Sens. J., Vol. 15, No. 1, 110-122, Jan. 2015, doi: 10.1109/JSEN.2014.2339739.
doi:10.1109/JSEN.2014.2339739

6. Liu, X. and B. Lillehoj, "Embroidered electrochemical sensors for biomolecular detection," Lab Chip, Vol. 16, No. 11, 2093-2098, May 2016, doi: 10.1039/C6LC00307A.
doi:10.1039/C6LC00307A

7. Liu, X. and B. Lillehoj, "Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers," Biosens. Bioelectron., Vol. 98, 189-194, Dec. 2017, doi: 10.1016/J.BIOS.2017.06.053.
doi:10.1016/j.bios.2017.06.053

8. Xu, L., Z. Liu, X. Chen, et al. "Deformation-resilient embroidered near field communication antenna and energy harvesters for wearable applications," Adv. Intell. Syst., Vol. 1, No. 6, 1900056, Oct. 2019, doi: 10.1002/AISY.201900056.
doi:10.1002/aisy.201900056

9. Sim, C. Y. D., C. W. Tseng, and H. J. Leu, "Embroidered wearable antenna for ultrawideband applications," Microw. Opt. Technol. Lett., Vol. 54, No. 11, 2597-2600, Nov. 2012, doi: 10.1002/MOP.27133.
doi:10.1002/mop.27133

10. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "A compact printed triangular monopole antenna for ultrawideband applications," Microw. Opt. Technol. Lett., Vol. 56, No. 5, 1155-1159, May 2014, doi: 10.1002/MOP.28290.
doi:10.1002/mop.28290

11. Wang, Z., L. Zhang, Y. Bayram, and J. L. Volakis, "Embroidered conductive fibers on polymer composite for conformal antennas," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4141-4147, 2012, doi: 10.1109/TAP.2012.2207055.
doi:10.1109/TAP.2012.2207055

12. Ivsic, B., D. Bonefacic, and J. Bartolic, "Considerations on embroidered textile antennas for wearable applications," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1708-1711, 2013, doi: 10.1109/LAWP.2013.2297698.
doi:10.1109/LAWP.2013.2297698

13. Zahertar, S., E. Laurin, L. E. Dodd, and H. Torun, "Embroidered rectangular split-ring resonators for the characterization of dielectric materials," IEEE Sens. J., 1-1, 2019, doi: 10.1109/JSEN.2019.2953251.

14. Melik, R., E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, "Metamaterial-based wireless strain sensors," Appl. Phys. Lett., Vol. 95, No. 1, 011106, Jul. 2009, doi: 10.1063/1.3162336.
doi:10.1063/1.3162336

15. Ekinci, G., A. Calikoglu, S. N. Solak, A. D. Yalcinkaya, G. Dundar, and H. Torun, "Split-ring resonator-based sensors on flexible substrates for glaucoma monitoring," Sensors Actuators A Phys., Vol. 268, 32-37, Dec. 2017, doi: 10.1016/J.SNA.2017.10.054.
doi:10.1016/j.sna.2017.10.054

16. Torun, H., F. C. Top, G. Dundar, and A. D. Yalcinkaya, "An antenna-coupled split-ring resonator for biosensing," J. Appl. Phys., Vol. 116, No. 12, 124701, Sep. 2014, doi: 10.1063/1.4896261.
doi:10.1063/1.4896261

17. Lee, H.-J., H.-S. Lee, K.-H. Yoo, and J.-G. Yook, "DNA sensing using split-ring resonator alone at microwave regime," J. Appl. Phys., Vol. 108, No. 1, 014908, Jul. 2010, doi: 10.1063/1.3459877.
doi:10.1063/1.3459877

18. Camli, B., E. Altinagac, H. Kizil, H. Torun, G. Dundar, and A. D. Yalcinkaya, "Gold-on-glass microwave split-ring resonators with PDMS microchannels for differential measurement in microfluidic sensing," Biomicrofluidics, Vol. 14, No. 5, 054102, Sep. 2020, doi: 10.1063/5.0022767.
doi:10.1063/5.0022767

19. Govind, G. and M. J. Akhtar, "Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions," IEEE Sens. J., Vol. 19, No. 24, 11900-11907, Dec. 2019, doi: 10.1109/JSEN.2019.2938853.
doi:10.1109/JSEN.2019.2938853

20. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sens. J., Vol. 14, No. 5, 1345-1351, 2014, doi: 10.1109/JSEN.2013.2295312.
doi:10.1109/JSEN.2013.2295312

21. Syscom Advanced Materials "Amberstrand 166,", metalcladfibers.com, 2018. https://static1.squarespace.com/static/558431b9e4b0875de16c5494/t/5d9d011bb7bacf1e9e34d93c-/1570570527783/Amberstrand+166.pdf (accessed Oct. 28, 2021).

22. Syscom Advanced Materials "Liberator 40,", metalcladfibers.com, 2018. https://static1.squarespace.com/static/558431b9e4b0875de16c5494/t/5d9d012db7bacf1e9e34dc86-/1570570546216/Liberator+40.pdf (accessed Oct. 28, 2021).

23. Adafruit "Adafruit Conductive Fabric Datasheet,", adafruit.com. https://cdn-shop.adafruit.com/product-files/1168/Pn1168 Datasheet.pdf (accessed Oct. 28, 2021).

24. Ibanez-Labiano, I. and A. Alomainy, "Dielectric Characterization of Non-Conductive Fabrics for Temperature Sensing through Resonating Antenna Structures," Mater. 2020, Vol. 13, No. 6, 1271, Mar. 2020, doi: 10.3390/MA13061271.

25. Smallwood, I. M., Handbook of Organic Solvent Properties, Elsevier Ltd., 1996.