1. Linz, T., C. Kallmayer, R. Aschenbrenner, and H. Reichl, "Embroidering electrical interconnects with conductive yarn for the integration of flexible electronic modules into fabric," Proc. --- Int. Symp. Wearable Comput. ISWC, Vol. 2005, 86-89, 2005, doi: 10.1109/ISWC.2005.19.
doi:10.1109/ISWC.2005.19
2. Weder, M., D. Hegemann, M. Amberg, et al. "Embroidered electrode with silver/titanium coating for long-term ECG monitoring," Sensors 2015, Vol. 15, No. 1, 1750-1759, Jan. 2015, doi: 10.3390/S150101750.
3. Logothetis, I., D. Vatansever Bayramol, I. Gil, Dabnichki, and E. Pirogova, "Evaluating silver-plated nylon (Ag/PA66) e-textiles for bioelectrical impedance analysis (BIA) application," Meas. Sci. Technol., Vol. 31, No. 7, Jul. 2020, doi: 10.1088/1361-6501/AB78C3.
4. Aigner, R., A. Pointner, T. Preindl, Parzer, and M. Haller, "Embroidered resistive pressure sensors: A novel approach for textile interfaces," Conf. Hum. Factors Comput. Syst. --- Proc., Apr. 2020, doi: 10.1145/3313831.3376305.
5. Atalay, O., W. R. Kennon, and E. Demirok, "Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modelling," IEEE Sens. J., Vol. 15, No. 1, 110-122, Jan. 2015, doi: 10.1109/JSEN.2014.2339739.
doi:10.1109/JSEN.2014.2339739
6. Liu, X. and B. Lillehoj, "Embroidered electrochemical sensors for biomolecular detection," Lab Chip, Vol. 16, No. 11, 2093-2098, May 2016, doi: 10.1039/C6LC00307A.
doi:10.1039/C6LC00307A
7. Liu, X. and B. Lillehoj, "Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers," Biosens. Bioelectron., Vol. 98, 189-194, Dec. 2017, doi: 10.1016/J.BIOS.2017.06.053.
doi:10.1016/j.bios.2017.06.053
8. Xu, L., Z. Liu, X. Chen, et al. "Deformation-resilient embroidered near field communication antenna and energy harvesters for wearable applications," Adv. Intell. Syst., Vol. 1, No. 6, 1900056, Oct. 2019, doi: 10.1002/AISY.201900056.
doi:10.1002/aisy.201900056
9. Sim, C. Y. D., C. W. Tseng, and H. J. Leu, "Embroidered wearable antenna for ultrawideband applications," Microw. Opt. Technol. Lett., Vol. 54, No. 11, 2597-2600, Nov. 2012, doi: 10.1002/MOP.27133.
doi:10.1002/mop.27133
10. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "A compact printed triangular monopole antenna for ultrawideband applications," Microw. Opt. Technol. Lett., Vol. 56, No. 5, 1155-1159, May 2014, doi: 10.1002/MOP.28290.
doi:10.1002/mop.28290
11. Wang, Z., L. Zhang, Y. Bayram, and J. L. Volakis, "Embroidered conductive fibers on polymer composite for conformal antennas," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4141-4147, 2012, doi: 10.1109/TAP.2012.2207055.
doi:10.1109/TAP.2012.2207055
12. Ivsic, B., D. Bonefacic, and J. Bartolic, "Considerations on embroidered textile antennas for wearable applications," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1708-1711, 2013, doi: 10.1109/LAWP.2013.2297698.
doi:10.1109/LAWP.2013.2297698
13. Zahertar, S., E. Laurin, L. E. Dodd, and H. Torun, "Embroidered rectangular split-ring resonators for the characterization of dielectric materials," IEEE Sens. J., 1-1, 2019, doi: 10.1109/JSEN.2019.2953251.
14. Melik, R., E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, "Metamaterial-based wireless strain sensors," Appl. Phys. Lett., Vol. 95, No. 1, 011106, Jul. 2009, doi: 10.1063/1.3162336.
doi:10.1063/1.3162336
15. Ekinci, G., A. Calikoglu, S. N. Solak, A. D. Yalcinkaya, G. Dundar, and H. Torun, "Split-ring resonator-based sensors on flexible substrates for glaucoma monitoring," Sensors Actuators A Phys., Vol. 268, 32-37, Dec. 2017, doi: 10.1016/J.SNA.2017.10.054.
doi:10.1016/j.sna.2017.10.054
16. Torun, H., F. C. Top, G. Dundar, and A. D. Yalcinkaya, "An antenna-coupled split-ring resonator for biosensing," J. Appl. Phys., Vol. 116, No. 12, 124701, Sep. 2014, doi: 10.1063/1.4896261.
doi:10.1063/1.4896261
17. Lee, H.-J., H.-S. Lee, K.-H. Yoo, and J.-G. Yook, "DNA sensing using split-ring resonator alone at microwave regime," J. Appl. Phys., Vol. 108, No. 1, 014908, Jul. 2010, doi: 10.1063/1.3459877.
doi:10.1063/1.3459877
18. Camli, B., E. Altinagac, H. Kizil, H. Torun, G. Dundar, and A. D. Yalcinkaya, "Gold-on-glass microwave split-ring resonators with PDMS microchannels for differential measurement in microfluidic sensing," Biomicrofluidics, Vol. 14, No. 5, 054102, Sep. 2020, doi: 10.1063/5.0022767.
doi:10.1063/5.0022767
19. Govind, G. and M. J. Akhtar, "Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions," IEEE Sens. J., Vol. 19, No. 24, 11900-11907, Dec. 2019, doi: 10.1109/JSEN.2019.2938853.
doi:10.1109/JSEN.2019.2938853
20. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sens. J., Vol. 14, No. 5, 1345-1351, 2014, doi: 10.1109/JSEN.2013.2295312.
doi:10.1109/JSEN.2013.2295312
21. Syscom Advanced Materials "Amberstrand 166,", metalcladfibers.com, 2018. https://static1.squarespace.com/static/558431b9e4b0875de16c5494/t/5d9d011bb7bacf1e9e34d93c-/1570570527783/Amberstrand+166.pdf (accessed Oct. 28, 2021).
22. Syscom Advanced Materials "Liberator 40,", metalcladfibers.com, 2018. https://static1.squarespace.com/static/558431b9e4b0875de16c5494/t/5d9d012db7bacf1e9e34dc86-/1570570546216/Liberator+40.pdf (accessed Oct. 28, 2021).
23. Adafruit "Adafruit Conductive Fabric Datasheet,", adafruit.com. https://cdn-shop.adafruit.com/product-files/1168/Pn1168 Datasheet.pdf (accessed Oct. 28, 2021).
24. Ibanez-Labiano, I. and A. Alomainy, "Dielectric Characterization of Non-Conductive Fabrics for Temperature Sensing through Resonating Antenna Structures," Mater. 2020, Vol. 13, No. 6, 1271, Mar. 2020, doi: 10.3390/MA13061271.
25. Smallwood, I. M., Handbook of Organic Solvent Properties, Elsevier Ltd., 1996.