Vol. 129
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-30
A New Clutter Elimination and Downrange Correction Algorithm for through Wall Radar Detection
By
Progress In Electromagnetics Research C, Vol. 129, 157-172, 2023
Abstract
Through wall radar imaging and detection applications are growing significantly. However, the target response is usually accompanied with a strong clutter which veils the target detection. In this paper, a new algorithm is proposed for clutter reduction and target downrange correction in through wall monostatic radar imaging. The proposed algorithm arranges the received radar signals in a matrix and then splits this matrix to frames. The frames are individually processed and filtered in frequency domain, then they are returned to time domain and merged together in a new matrix. The final step is enhancing the target response via a matched filter. The proposed algorithm performance is evaluated by target to clutter ratio (TCR), signal to clutter ratio (SCR), and downrange target position error (DTPE) in three different simulated scenarios. The simulation results exhibit the proposed algorithm capability in both removing the clutter and adjusting the target downrange to be with an evident appearance and accurate position. In the most complicated scenario which consists of two separated walls and a target behind them, using the proposed algorithm improves the performance in terms of TCR, SCR and DTPE by 49.7 dB, 70.7 dB, and, 7.6% respectively.
Citation
Dheyaa T. Al-Zuhairi, Abbas Salman Hameed, and Sura F. Yousif, "A New Clutter Elimination and Downrange Correction Algorithm for through Wall Radar Detection," Progress In Electromagnetics Research C, Vol. 129, 157-172, 2023.
doi:10.2528/PIERC22102204
References

1. Baharian, M., H. Rajabalipanah, M. H. Fakheri, and A. Abdolali, "Removing the wall effects using electromagnetic complex coating layer for ultra-wideband through wall imaging," IET Microwaves, Antennas & Propagation, Vol. 11, No. 4, 477-482, 2017.
doi:10.1049/iet-map.2016.0514

2. Thajudeen, C. and A. Hoorfar, "A hybrid bistatic-monostatic radar technique for calibration-free estimation of lossy wall parameters," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 1249-1252, 2017.
doi:10.1109/LAWP.2016.2630006

3. Vishwakarma, S. and S. S. Ram, "Mitigation of through-wall distortions of frontal radar images using denoising autoencoders," IEEE Transactions on Geoscience & Remote Sensing, Vol. 58, No. 9, 6650-6653, Sept. 2020.
doi:10.1109/TGRS.2020.2978440

4. Zhu, Z., D. Yang, J. Zhang, and F. Tong, "Dataset of human motion status using IR-UWB through-wall radar," Journal of Systems Engineering & Electronics, Vol. 32, No. 5, 1083-1096, Oct. 2021.

5. Liu, X., H. Leung, and G. A. Lampropoulos, "Effect of wall parameters on ultra-wideband synthetic aperture through-the-wall radar imaging," IEEE Transactions on Aerospace & Electronic Systems, Vol. 48, No. 4, 3435-3449, Oct. 2012.
doi:10.1109/TAES.2012.6324724

6. Al-Zuhairi, D. T., A. M. Abed, J. M. Gahl, and N. E. Islam, "Phase-based window function and CD-DMAS beamforming for microwave breast cancer detection," IET Microwaves, Antennas & Propagation, Vol. 14, No. 7, 608-616, 2020.
doi:10.1049/iet-map.2018.6078

7. Dong, Z., B. Xue, J. Lei, X. Zhao, and J. Gao, "Study on propagation characteristics of ground penetrating radar wave in dikes and dams with polymer grouting repair using finite-difference time-domain with perfectly matched layer boundary condition," Sustainability, Vol. 14, No. 16, 1-15, 2022.

8. Tivive, F. H. C., A. Bouzerdoum, and M. G. Amin, "A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging," IEEE Transactions on Geoscience & Remote Sensing, Vol. 53, No. 4, 2108-2122, Apr. 2015.
doi:10.1109/TGRS.2014.2355211

9. Zhang, L. Z., B. Y. Lu, Z.-M. Zhou, and X. Sun, "A wall-clutter suppression method based on spatial signature in MIMO through-the-wall radar imaging," Progress In Electromagnetics Research B, Vol. 55, 277-295, 2013.
doi:10.2528/PIERB13070103

10. Sleasman, T., M. F. Imani, M. Boyarsky, K. P. Trofatter, and D. R. Smith, "Computational through-wall imaging using adynamic metasurface antenna," OSA Continuum, Vol. 2, No. 12, 3499-3513, Dec. 2019.
doi:10.1364/OSAC.2.003499

11. Lazaro, A., D. Girbau, and R. Villarino, "Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars," Sensors, Vol. 14, No. 2, 2595-2618, 2014.
doi:10.3390/s140202595

12. Verma, P. K., A. N. Gaikwad, D. Singh, and M. J. Nigam, "Analysis of clutter reduction techniques for through wall imaging in UWB range," Progress In Electromagnetics Research B, Vol. 17, 29-48, 2009.
doi:10.2528/PIERB09060903

13. Lim, Y. and S. Nam, "Target-to-clutter ratio enhancement of images in through-the-wall radar using a radiation pattern-based delayed-sum algorithm," Journal of Electromagnetic Engineering & Science, Vol. 14, No. 4, 405-410, Dec. 2014.
doi:10.5515/JKIEES.2014.14.4.405

14. Zheng, C., X. Xi, and Z. Song, "Through-the-wall radar clutter mitigation using stepped-frequency signal," Electronics Letters, Vol. 55, No. 1, 53-55, 2018.
doi:10.1049/el.2018.5004

15. Zhang, Y. and T. Xia, "In-wall clutter suppression based on low-rank and sparse representation for through-the-wall radar," IEEE Geoscience & Remote Sensing Letters, Vol. 13, No. 5, 671-675, May 2016.
doi:10.1109/LGRS.2016.2535161

16. Tang, V. H., A. Bouzerdoum, and S. L. Phung, "Wall clutter mitigation for radar imaging of indoor targets: A matrix completion approach," 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES), 116-121, Hanoi, Vietnam, 2017.

17. Tivive, F. H. C. and A. Bouzerdoum, "Clutter removal in through-the-wall radar imaging using sparse autoencoder with low-rank projection," IEEE Transactions on Geoscience & Remote Sensing, Vol. 59, No. 2, 1118-1129, Feb. 2021.
doi:10.1109/TGRS.2020.3004331

18. Zhou, Y., C. Huang, H. Liu, D. Li, and T.-K. Truong, "Front-wall clutter removal in through-the-wall radar based on weighted nuclear norm minimization," IEEE Geoscience & Remote Sensing Letters, Vol. 19, No. 3501405, 1-5, Nov. 2022.

19. Vishwakarma, S. and S. S. Ram, "Mitigation of through-wall distortions of frontal radar images using denoising autoencoders," IEEE Transactions on Geoscience & Remote Sensing, Vol. 58, No. 9, 6650-6663, Sept. 2020.
doi:10.1109/TGRS.2020.2978440

20. Shi, X., C. Wang, and C. Zheng, "Wall clutter mitigation based on spread spectrum radar in through-the-wall radar," Microwave and Optical Technology Letters, Vol. 62, No. 5, 1987-1990, May 2020.
doi:10.1002/mop.32253

21. Yoon, Y.-S. and M. G. Amin, "Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging," IEEE Transactions on Geoscience & Remote Sensing, Vol. 47, No. 9, 3192-3208, Sept. 2009.
doi:10.1109/TGRS.2009.2019728

22. Kim, B., D. Kim, Y. Lim, D. Yang, S. Nam, and J.-H. Song, "A clutter rejection technique using a delay-line for wall-penetrating FMCW radar," IEICE Transactions on Electronics, Vol. 99-C, No. 5, 597-600, 2016.
doi:10.1587/transele.E99.C.597

23. Yang, S., H. Qin, X. Liang, and T. A. Gulliver, "Clutter elimination and harmonic suppression of non-stationary life signs for long-range and through-wall human subject detection using Spectral Kurtosis Analysis (SKA)-based Windowed Fourier Transform (WFT) method," Applied Sciences, Vol. 9, No. 2, 2019.

24. Banerjee, P. P. and G. Nehmetallah, "Linear and nonlinear propagation in negative index materials," Journal of the Optical Society of America B, Vol. 23, No. 11, 2348-2355, Nov. 2006.
doi:10.1364/JOSAB.23.002348

25. Loizou, P. C., Speech Enhancement Theory and Practice, 2nd Ed., CRC Press, Taylor & Francis Group, NW Boca Raton, FL, USA, 2013.
doi:10.1201/b14529

26. Jaiswal, R. and D. Romero, "Implicit wiener filtering for speech enhancement in non-stationary noise," 11th International Conference on Information Science & Technology (ICIST), 39-47, Chengdu, China, May 21-23, 2021.

27. Jaiswal, R. K., S. R. Yeduri, and L. R. Cenkeramaddi, "Single-channel speech enhancement using implicit Wiener filter for high-quality speech communication," International Journal of Speech Technology, Vol. 25, No. 3, 745-758, 2022.
doi:10.1007/s10772-022-09987-4

28. Aftanas, M., J. Sachs, M. Drutarovský, and D. Kocur, "Efficient and fast method of wall parameter estimation by using UWB radar system," Frequenz, Vol. 63, No. 11-12, 231-235, 2009.
doi:10.1515/FREQ.2009.63.11-12.231

29. Al-Zuhairi, D. T., J. M. Gahl, and N. E. Islam, "Compact dual-polarized quad-ridged UWB horn antenna design for breast imaging," Progress In Electromagnetics Research C, Vol. 72, 133-140, 2017.
doi:10.2528/PIERC16121405

30. Liu, L., Q. Chen, Y. Han, H. Xu, J. Li, and B. Wang, "Improved clutter removal by robust principal component analysis for chaos through-wall imaging radar," Electronics, Vol. 9, No. 25, 2020.