Vol. 129
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-22
Low SAR Dual-Band Circularly Polarized Wearable RFID Antenna Using FSS Reflector with Reduced EMI
By
Progress In Electromagnetics Research C, Vol. 129, 17-34, 2023
Abstract
A circularly polarized dual band wearable antenna using frequency selective surface backed reflector for radio frequency identification reader resonating at global ultra-high frequency band (860-960 MHz) & ISM band (2.4 GHz) is proposed in this work. For circular polarization, the corner is truncated at the opposite end of a square patch with periodic slots over the patch for getting an orthogonal electric field in both the X & Y axis direction. Another truncated inner square slot patch miniaturizes the antenna further for stable frequency response. Finally, the periodic frequency selective surface-based reflector is used for gain enhancement & crosstalk reduction. The simulated & measured results for antenna over human body are plotted against the required bandwidth. The return loss and maximum radiated gains of -31 dB and 8.30 dB are achieved at a resonating frequency of 2.4 GHz with the reading range and Specific Absorption Rate (SAR) of 6.98 m and 0.77 watt/kg respectively. At 865 MHz the return loss & maximum radiated gain is -23 dB & 5.31 dB with the reading range & SAR of 5.21 m & 0.65 watt/kg respectively. The proposed UHF RFID antenna is circularly polarized with the axial ratio bandwidth less than 3 dB with approximately 15% (860-965 MHz & 2.4-2.45 GHz) range. The designed wearable antenna provides better isolation when FSS is incorporated while enhancing the gain for longer read range. The FSS reflector below the antenna reduces the SAR for on-body wearable applications. This RFID antenna can be used efficiently for WBAN applications as a portable RFID reader wearable antenna for remote sensing & real time monitoring.
Citation
Shivani Sharma, Malay Ranjan Tripathy, and Ajay Kumar Sharma, "Low SAR Dual-Band Circularly Polarized Wearable RFID Antenna Using FSS Reflector with Reduced EMI," Progress In Electromagnetics Research C, Vol. 129, 17-34, 2023.
doi:10.2528/PIERC22102002
References

1. Paracha, K. N., S. K. Abdul Rahim, P. J. Soh, and M. Khalily, "Wearable antennas: A review of materials, structures, and innovative features for autonomous communication and sensing," IEEE Access, Vol. 7, 56694-56712, 2019.
doi:10.1109/ACCESS.2019.2909146

2. Zhao, B., J. Mao, J. Zhao, H. Yang, and Y. Lian, "The role and challenges of body channel communication in wearable flexible electronics," IEEE Trans. Biomed. Circuits Syst., Vol. 14, No. 2, 283-296, 2020.
doi:10.1109/TBCAS.2020.2966285

3. Ahmed, S., S. T. Qureshi, L. Sydanheimo, L. Ukkonen, and T. Bjorninen, "Comparison of wearable E-textile split ring resonator and slotted patch RFID reader antennas embedded in work gloves," IEEE Journal of Radio Frequency Identi cation, Vol. 3, No. 4, 259-264, 2019.
doi:10.1109/JRFID.2019.2926194

4. "FCC report and order for Part 15: Acceptance of ultra wideband (UWB) systems from 3.1-10.6 GHz," FCC, Washington, DC, USA, 2002.

5. Taylor, P. S. and J. C. Batchelor, "Finger-worn UHF far-field RFID tag antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 2513-2517, 2019.
doi:10.1109/LAWP.2019.2941731

6. Parthiban, P., "Fixed UHF RFID reader antenna design for practical applications: A guide for antenna engineers with examples," IEEE Journal of Radio Frequency Identi cation, Vol. 3, No. 3, 191-204, 2019.
doi:10.1109/JRFID.2019.2920110

7. Kim, J., A. S. Campbell, B. E. de Avila, and J. Wang, "Wearable biosensors for healthcare monitoring," Nat. Biotechnol, Vol. 37, No. 4, 389-406, 2019.
doi:10.1038/s41587-019-0045-y

8. Ashyap, A. Y. I., "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, 2020.
doi:10.1109/ACCESS.2020.2963997

9. Tajin, M. A. S. and K. R. Dandekar, "Pattern recon gurable UHF RFID reader antenna array," IEEE Access, Vol. 8, 187365-187372, 2020.
doi:10.1109/ACCESS.2020.3031296

10. Arif, A., M. Zubair, M. Ali, M. U. Khan, and M. Q. Mehmood, "Compact, low-profile fractal antenna for wearable on-body WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 981-985, 2019.
doi:10.1109/LAWP.2019.2906829

11. Alqadami, A. S. M., K. S. Bialkowski, A. T. Mobashsher, and A. M. Abbosh, "Wearable electromagnetic head imaging system using exible wideband antenna array based on polymer technology for brain stroke diagnosis," IEEE Trans. Biomed. Circuits Syst., Vol. 13, No. 1, 124-134, 2019.
doi:10.1109/TBCAS.2018.2878057

12. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low pro le high gain low SAR antenna FSS-backed for WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 6378-6388, 2019.
doi:10.1109/TAP.2019.2923058

13. Le, T. T. and T.-Y. Yun, "Miniaturization of a dual-band wearable antenna for WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 1452-1456, 2020.
doi:10.1109/LAWP.2020.3005658

14. Zhang, K., G. A. E. Vandenbosch, and S. Yan, "A novel design approach for compact wearable antennas based on metasurfaces," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 4, 918-927, 2020.
doi:10.1109/TBCAS.2020.3010259

15. Gao, G., C. Yang, B. Hu, R. Zhang, and S.Wang, "A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 288-292, 2019.
doi:10.1109/LAWP.2018.2889117

16. Haydhah, S. A., F. Ferrero, L. Lizzi, M. S. Sharawi, and A. Zerguine, "A multifunctional compact pattern recon gurable antenna with four radiation patterns for sub-GHz IoT applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 613-622, 2021.
doi:10.1109/OJAP.2021.3078236

17. Wasfy, M. and H. Hammad, "Modelling and design of a large segmented loop antenna with a coplanar parasitic slot loop for NF UHF RFID readers," IEEE Journal of Radio Frequency Identi cation, Vol. 6, 31-40, 2022.
doi:10.1109/JRFID.2021.3102091

18. Ahmed, G., et al. "Rigorous analysis and evaluation of specific absorption rate (SAR) for mobile multimedia healthcare," IEEE Access, Vol. 6, 29602-29610, 2018.
doi:10.1109/ACCESS.2018.2839909

19. Dey, S., M. S. Are n, and N. C. Karmakar, "Design and experimental analysis of a novel compact and flexible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021.
doi:10.1109/ACCESS.2021.3068082

20. Sharma, S., M. R. Tripathy, and A. K. Sharma, "Low pro le and low SAR flexible wearable patch antenna for WBAN," 8th International Conference on Signal Processing and Integrated Networks (SPIN), 1119-1124, 2021.

21. Can, S. and A. E. Yilmaz, "Reduction of specific absorption rate with artificial magnetic conductors," Int. J. RF Microw. Comput. Aided Eng., Vol. 26, No. 4, 349-354, 2016.
doi:10.1002/mmce.20974

22. Sharma, S., M. R. Tripathy, and A. K. Sharma, "High gain FSS integrated slotted UHF RFID antenna for WBAN," Int. J. Syst. Assur. Eng. Manag., 2021, https://doi.org/10.1007/s13198-021-01352-z.

23. Sharma, S., M. R. Tripathy, and A. K. Sharma, "Dual-band circularly polarized wearable patch antenna for RFID reader," IEEE International Conference on RFID Technology and Applications (RFID-TA), 195-198, 2021.
doi:10.1109/RFID-TA53372.2021.9617250

24. Liu, X., Y. Liu, and M. M. Tentzeris, "A novel circularly polarized antenna with coin-shaped patches and a ring-shaped strip for worldwide UHF RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 707-710, 2015.
doi:10.1109/LAWP.2014.2378513

25. Lai, F.-P., J.-F. Yang, and Y.-S. Chen, "Compact dual-band circularly polarized antenna using double cross dipoles for RFID handheld readers," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 1429-1433, 2020.
doi:10.1109/LAWP.2020.3004881

26. Lorenzo, J., A. Lazaro, R. Villarino, and D. Girbau, "Modulated frequency selective surfaces for wearable RFID and sensor applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 4447-4456, 2016.
doi:10.1109/TAP.2016.2596798

27. Saeed, S. M., C. A. Balanis, C. R. Birtcher, A. C. Durgun, and H. N. Shaman, "Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2396-2399, 2017.
doi:10.1109/LAWP.2017.2720558

28. Lazaro, A., A. Ramos, D. Girbau, and R. Villarino, "A novel UWB RFID tag using active frequency selective surface,", Vol. 61, No. 3, 1155-1165, Mar. 2013.
doi:10.1109/TAP.2012.2228838

29. Sharma, S., M. R. Tripathy, and A. K. Sharma, "FSS supported longer read range passive UHF RFID reader antenna," IEEE International Conference on RFID Technology and Applications (RFID-TA), 207-210, 2021.
doi:10.1109/RFID-TA53372.2021.9617417

30. Pozar, D. M. and D. H. Schaubert, Microstrip Antennas: The Design and Analysis of Microstrip Antennas and Arrays, 4th Edition, John Wiley and Sons, 2012.

31. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

32. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

33. Can, S. and A. E. Yilmaz, "Reduction of specific absorption rate with artificial magnetic conductors," Int. J. RF Microw. Comput. Aided Eng., Vol. 26, No. 4, 349-354, 2016.
doi:10.1002/mmce.20974

34. Fakhte, R. and I. Aryanian, "Compact fabry-perot antenna with wide 3 dB axial ratio bandwidth based on FSS and AMC structures," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 1326-1330, 2020.
doi:10.1109/LAWP.2020.2999745

35. Sarkar, S. and B. Gupta, "A dual-band circularly polarized antenna with a dual-band AMC reflector for RFID readers," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 796-800, 2020.
doi:10.1109/LAWP.2020.2980325

36. Ashyap, A. Y. I., et al. "Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications," IEEE Access, Vol. 6, 77529-77541, 2018.
doi:10.1109/ACCESS.2018.2883379

37. Wang, M., et al. "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Trans. Antennas Propag., Vol. 66, No. 6, 3076-3086, 2018.
doi:10.1109/TAP.2018.2820733

38. Lai, F.-P., J.-F. Yang, and Y.-S. Chen, "Compact dual-band circularly polarized antenna using double cross dipoles for RFID handheld readers," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 1429-1433, 2020.
doi:10.1109/LAWP.2020.3004881

39. Singh, R. K., A. Michel, P. Nepa, A. Salvatore, M. Terraroli, and P. Perego, "Compact and wearable yagi-like textile antennas for near-field UHF-RFID readers," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1324-1333, 2021.
doi:10.1109/TAP.2020.3030944

40. Ahmed, S., D. Le, L. Sydanheimo, L. Ukkonen, and T. Bjorninen, "Wearable metasurface-enabled quasi-yagi antenna for UHF RFID reader with end-fire rediation along the forearm," IEEE Access, Vol. 9, 77229-77238, 2021.
doi:10.1109/ACCESS.2021.3078239