Vol. 126
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-16
Study on Electromagnetic Vibration Performance of Hybrid Excitation Double Stator BSRM for Flywheel Battery Under Eccentricity
By
Progress In Electromagnetics Research C, Vol. 126, 1-11, 2022
Abstract
In this paper, the electromagnetic vibration characteristics of hybrid excitation double-stator Bearingless Switched Reluctance Motor (HEDSBSRM) used in flywheel battery are analyzed when the rotor is eccentric. Firstly, the influence of rotor eccentricity on motor vibration is theoretically analyzed. Then the finite element method is adopted to study the radial electromagnetic force of the motor in the two-dimensional air-gap region. In addition, the three dimensional equivalent vibration model of the motor outerstator is established, and the mode shapes and natural frequencies of the motor stator are obtained by the modal analysis. The vibration characteristics of the outer stator under eccentric motion are analyzed by the coupling calculation of electromagnetic field and mechanical field. Finally, the modal combination principle is used to analyze the vibration characteristics of the motor running at multiple speeds under eccentric condition. The results show that the vibration of HEDSBSRM is closely related to eccentricity, which affects the motor performance and lays the foundation for the optimization design of HEDSBSRM application in flywheel battery.
Citation
Qianwen Xiang, Zhende Peng, and Yu Ou, "Study on Electromagnetic Vibration Performance of Hybrid Excitation Double Stator BSRM for Flywheel Battery Under Eccentricity," Progress In Electromagnetics Research C, Vol. 126, 1-11, 2022.
doi:10.2528/PIERC22100603
References

1. Sun, Y., Y. Yuan, Y. Huang, W. Zhang, and L. Liu, "Review of maglev switched reluctance motor and its key technologies," Transactions of China Electrotechnical Society, Vol. 30, No. 22, 1-8, 2015.

2. Allirani, S., H. Vidhya, T. Aishwarya, T. Kiruthika, and V. Kowsalya, "Design and performance analysis of switched reluctance motor using ANSYS Maxwell," 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 1427-1432, Tirunelveli, 2018.

3. Sun, X., Y. Chen, S. Wang, G. Lei, Z. Yang, and S. Han, "Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for HEVs using nonlinear lumped parameter equivalent circuit model," IEEE/ASME Trans. Mech., Vol. 23, No. 2, 747-757, Feb. 2018.
doi:10.1109/TMECH.2018.2803148

4. Isfahani, A. H. and B. Fahimi, "Vibration analysis of a double-stator switched reluctance machine," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 3244-3248, 2018.
doi:10.1109/ECCE.2018.8558012

5. Gong, C., S. Li, T. Habetler, and P. Zhou, "Acoustic modeling and prediction of ultra-high speed switched reluctance machines based on finite element analysis," 2019 IEEE International Electric Machines & Drives Conference (IEMDC), 336-342, 2019.
doi:10.1109/IEMDC.2019.8785120

6. Ru, L., "New stator structure reducing vibration and noise in switched reluctance motor," 2015 18th International Conference on Electrical Machines and Systems (ICEMS), 836-839, 2015.
doi:10.1109/ICEMS.2015.7385150

7. Ayari, S., M. Besbes, M. Lecrivain, and M. Gabsi, "Effects of the airgap eccentricity on the SRM vibrations," IEEE International Electric Machines and Drives Conference. IEMDC'99. Proceedings (Cat. No. 99EX272), 138-140, 1999.
doi:10.1109/IEMDC.1999.769052

8. Chen, L. and W. Hofmann, "Analysis of radial forces based on rotor eccentricity of bearingless switched reluctance motors," The XIX International Conference on Electrical Machines - ICEM 2010, 1-6, 2010.

9. Behra, N. and A. K. Pradhan, "Effect of rotor eccentricity in bearingless switched reluctance motor," 2018 Technologies for Smart-City Energy Security and Power (ICSESP), 1-6, 2018.

10. Yan, Y., D. Zhiquan, Z. Qianying, and W. Xiaolin, "Stator vibration analysis of bearingless switched reluctance motors," 2010 International Conference on Electrical and Control Engineering, 1993-1996, 2010.
doi:10.1109/iCECE.2010.490

11. Wang, Y., C. Zhao, and X. Li, "Vibration and noise analysis of flux-modulation double stator electrical-excitation synchronous machine," IEEE Transactions on Energy Conversion, Vol. 36, No. 4, 3395-3404, Dec. 2021.
doi:10.1109/TEC.2021.3084607

12. Li, J., D. Choi, and Y. Cho, "Analysis of rotor eccentricity in switched reluctance motor with parallel winding using FEM," IEEE Transactions on Magnetics, Vol. 45, No. 6, 2851-2854, Jun. 2009.
doi:10.1109/TMAG.2009.2018694

13. Jia, S., R. Qu, J. Li, Z. Fu, H. Chen, and L. Wu, "Analysis of FSCW SPM servo motor with static, dynamic and mixed eccentricity in aspects of radial force and vibration," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), 1745-1753, 2014.
doi:10.1109/ECCE.2014.6953629

14. Lin, F., S. Zuo, W. Deng, and S. Wu, "Modeling and analysis of acoustic noise in external rotor In-Wheel motor considering Doppler effect," IEEE Transactions on Industrial Electronics, Vol. 65, No. 6, 4524-4533, Jun. 2018.
doi:10.1109/TIE.2017.2758742

15. Zuo, S., F. Lin, and X. Wu, "Noise analysis, calculation, and reduction of external rotor permanent-magnet synchronous motor," IEEE Transactions on Industrial Electronics, Vol. 62, No. 10, 6204-6212, Oct. 2015.
doi:10.1109/TIE.2015.2426135

16. Dai, Y., S. Cui, and L. Song, "Finite element modal analysis of vehicle motor," Proceedings of the CSEE, Vol. 31, No. 9, 100-104, 2011.

17. Girgis, R. S. and S. P. Vermas, "Method for accurate determination of resonant frequencies and vibration behaviour of stators of electrical machines," IEE Proceedings. Part B: Electric Power Applications, Vol. 128, No. 1, 1-11, 1981.
doi:10.1049/ip-b.1981.0001

18. Cai, W., P. Pillay, and Z. Tang, "Impact of stator windings and end-bells on resonant frequencies and mode shapes of switched reluctance motors," IEEE Transactions on Industry Applications, Vol. 38, No. 4, 1027-1036, 2002.
doi:10.1109/TIA.2002.800594

19. Zhang, X.-B., D. Wang, and Z.-Z. Su, "Stator modal analysis of large split type magnetic bearing motor system," Journal of Mechanical Engineering, Vol. 52, No. 8, 1-7, 2016.
doi:10.3901/JME.2016.08.001

20. Wang, H., Z. Wang, Q. Jiang, et al. "Analytical calculation of the natural frequency of switched reluctance motor," Proceedings of the CSEE, Vol. 25, No. 12, 133-137, 2005.

21. Wu, J., "Research on stator modes and natural frequencies of switched reluctance motor based on physical model," Proceedings of the CSEE, 112-117, Aug. 2004.