1. Prajapati, B. and M. C. Chudasama, "Modeling of grid connected PMSG based WECS," 2020 IEEE International Power and Renewable Energy Conference, 1-6, Karunagappally, India, 2020.
2. Belkhier, Y. and A. Y. Achour, "Passivity-based current control strategy for PMSG wind turbine," 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), 1-4, Tebessa, Algeria, 2019.
3. Mi, D., T. Wang, M. Gao, and Z. Wang, "Small signal stability analysis of PMSG-VSG and optimal design for control parameters," 2020 IEEE Power & Energy Society General Meeting (PESGM), 1-5, Montreal, QC, Canada, 2020.
4. Sun, B., Z. Chen, C. Gao, A. Haddad, J. Liang, and X. Liu, "A power decoupling control for wind power converter based on series-connected MMC and open-winding PMSG," IEEE Transactions on Industrial Electronics, Vol. 69, No. 8, 8091-8101, Aug. 2022.
doi:10.1109/TIE.2021.3099227
5. Wang, T., S. Huang, M. Gao, and Z. Wang, "Adaptive extended Kalman filter based dynamic equivalent method of PMSG wind farm cluster," IEEE Transactions on Industry Applications, Vol. 57, No. 3, 2908-2917, May-June 2021.
doi:10.1109/TIA.2021.3055749
6. Xu, S., S. Tao, W. Zheng, Y. Chai, M. Ma, and L. Ding, "Multiple open-circuit fault diagnosis for back-to-back converter of PMSG wind generation system based on instantaneous amplitude estimation," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-13, Art No. 3512413, 2021.
7. Wu, Z., X. Zou, X. Yuan, and W. Xiong, "Review on virtual synchronous generator technologies," The 16th IET International Conference on AC and DC Power Transmission (ACDC 2020), 744-751, Online Conference, 2020.
8. Wang, D., J. Tang, and J. Qiao, "Review of VSG for industrial process data regression modeling," 2021 40th Chinese Control Conference (CCC), 1316-1321, Shanghai, China, 2021.
doi:10.23919/CCC52363.2021.9549875
9. Cheng, C., H. Yang, Z. Zeng, S. Tang, and R. Zhao, "Rotor inertia adaptive control method of virtual synchronous generator," Power System Automation, Vol. 39, No. 19, 82-89, 2015.
10. Zhu, Z., S. Huang, Z. Li, and Y. Xiao, "Research on control strategy for micro-grid adaptive rotating inertia virtual synchronous generator," Proceedings of the CSU-EPSA, Vol. 32, No. 4, 111-115, 2020.
11. Li, J., B. Wen, and H. Wang, "Adaptive virtual inertia control strategy of VSG for micro-grid based on improved bang-bang control strategy," IEEE Access, Vol. 7, 39509-39514, 2019.
doi:10.1109/ACCESS.2019.2904943
12. Ke, X., W. Zhang, P. Li, S. Niu, S. Sheng, and J. Yang, "Fuzzy adaptive virtual inertia control for high wind power penetration system," Power System Technology, Vol. 44, No. 6, 2127-2136, 2020.
13. Lao, H., L. Zhang, T. Zhao, and L. Zou, "Frequency regulation strategy for DFIG combining over-speed control and adaptive virtual inertia," 2019 IEEE Innovative Smart Grid Technologies --- Asia (ISGT Asia), 1663-1666, Chengdu, China, 2019.
doi:10.1109/ISGT-Asia.2019.8881628
14. Yue, J., X. Zhang, P. Zhou, and T. Tong, "Virtual synchronization control strategy for double-fed wind turbines based on adaptive inertia damping," Proceedings of the CSU-EPSA, Vol. 33, No. 9, 40-48, 2021.
15. Li, S., W. Wang, S. Qin, X. Zhang, and C. Li, "Fuzzy adaptive virtual inertia control strategy of wind turbines based on system frequency response interval division," Power System Technology, Vol. 45, No. 5, 1658-1665, 2021.
16. Li, D., Q. Zhu, S. Lin, and X. Y. Bian, "A self-adaptive inertia and damping combination control of VSG to support frequency stability," IEEE Transactions on Energy Conversion, Vol. 32, No. 1, 397-398, March 2017.
doi:10.1109/TEC.2016.2623982
17. Wang, Q., D. Zhou, S. Yin, Y. Lei, and T. He, "Improved adaptive inertia and damping coefficient control strategy of VSG based on optimal damping ratio," 2022 International Power Electronics Conference (IPEC-Himeji 2022 --- ECCE Asia), 102-107, Himeji, Japan, 2022.
doi:10.23919/IPEC-Himeji2022-ECCE53331.2022.9806825
18. Ban, G., Y. Xu, D. Guo, W. Zhou, H. Zheng, and X. Yuan, "Research on adaptive VSG control strategy based on inertia and damping," 2021 IEEE Sustainable Power and Energy Conference (iSPEC), 1584-1589, Nanjing, China, 2021.
doi:10.1109/iSPEC53008.2021.9735506
19. Ding, J., J. Zhang, and Z. Ma, "VSG inertia and damping coefficient adaptive control," 2020 Asia Energy and Electrical Engineering Symposium (AEEES), 431-435, Chengdu, China, 2020.
20. Gong, R. and J. Gu, "Adaptive control strategy of inertia and damping for load virtual synchronous machine," Electrical Measurement & Instrumentation, 1-7, 2021.
21. Li, D., Q. Zhu, Y. Cheng, Q. Liu, S. Lin, F. Yang, and X. Bian, "Control strategy of virtual synchronous generator based on adaptive inertia damping integrated control algorithm," Electr. Power Automation Equip., Vol. 37, No. 11, 72-77, 2017.
22. Hsu, C. F. and B. K. Lee, "FPGA-based adaptive PID control of a DC motor driver via sliding-mode approach," Expert Systems with Applications, Vol. 38, No. 9, 11866-11872, 2011.
doi:10.1016/j.eswa.2011.02.185
23. Hou, B. J., J. S. Gao, X. Q. Li, et al. "Study on repetitive PID control of linear motor in wafer stage of lithography," Procedia Engineering, Vol. 29, No. 1, 3863-3867, 2012.
doi:10.1016/j.proeng.2012.01.585
24. Yang, J., C. Shang, Y. Li, F. Li, L. Shen, and Q. Shen, "Constructing ANFIS with sparse data through group-based rule interpolation: An evolutionary approach," IEEE Transactions on Fuzzy Systems, Vol. 30, No. 4, 893-907, April 2022.
doi:10.1109/TFUZZ.2021.3049949
25. Pournazarian, B., R. Sangrody, M. Saeedian, O. Gomis-Bellmunt, and E. Pouresmaeil, "Enhancing microgrid small-signal stability and reactive power sharing using ANFIS-tuned virtual inductances," IEEE Access, Vol. 9, 104915-104926, 2021.
doi:10.1109/ACCESS.2021.3100248