Vol. 128
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-12
Anisotropy Analysis of the 3D-Radial Point Interpolation Method in Lossy Media
By
Progress In Electromagnetics Research C, Vol. 128, 207-218, 2023
Abstract
This paper presents the general numerical dispersion relationship for the three-dimensional (3-D) Radial Point Interpolation (RPIM) method in lossy media. A similar analysis has also been carried out and compared with the traditional Finite-Difference Time-Domain (FDTD) method. Both methods investigate dispersion, numerical loss, and anisotropy versus electric conductivity. The RPIM reveals lower numerical loss errors (NLE) in a wide conductivity range at the considered frequency. Furthermore, the numerical experiments show that a slight increase in the conductivity, for the lossless case, has almost removed the numerical anisotropy dispersion, which improves the numerical resonance frequency precision. Therefore, this effect can be used as an anisotropy optimization technique for lossless media. Based on a close examination of the experimental results around the resonant frequency, the numerical error for the lossless case was divided by ten. As a result, the experimental and theoretical resonance frequencies are found to be in good agreement.
Citation
Hichem Naamen, Ajmi Ben Hadj Hamouda, and Taoufik Aguili, "Anisotropy Analysis of the 3D-Radial Point Interpolation Method in Lossy Media," Progress In Electromagnetics Research C, Vol. 128, 207-218, 2023.
doi:10.2528/PIERC22092908
References

1. Sadasiva, M. R., Time Domain Electromagnetics, Academic Press, 1999.

2. Liu, G. R., Mesh-Free Methods Moving beyond the Finite Element Method, CRC Press, 2003.
doi:10.1115/1.1553432

3. Kaufmann, T., Y. Yiqiang, C. Engström, Z. Chen, and C. Fumeaux, "Recent developments of the meshless radial point interpolation method for time-domain electromagnetics," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 25, 468-489, 2012.
doi:10.1002/jnm.1830

4. Angulo, A., L. P. Pozo, and F. Perazzo, "A posteriori error estimator and an adaptive technique in meshless finite points method," Eng. Anal. Bound. Elem., Vol. 33, No. 11, 1322-1338, 2009.
doi:10.1016/j.enganabound.2009.06.004

5. Kaufmann, T., C. Engström, and C. Fumeaux, "Residual-based adaptive refinement for meshless eigenvalue solvers," 2010 International Conference on Electromagnetics in Advanced Applications, 244-247, Sydney, Australia, 2010.

6. Liu, G. R. and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming, Springer, 2005.

7. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method, Artech House, 2000.

8. Yang, S., Z. Chen, Y. Yu, and S. Ponomarenko, "On the numerical dispersion of the radial point interpolation meshless method," IEEE Micr. and Wir. Comp. Let., Vol. 24, No. 10, 653-655, October 2014.
doi:10.1109/LMWC.2014.2340696

9. Fu, W. and E. L. Tan, "Stability and dispersion analysis for ADI-FDTD method in lossy media," IEEE Trans. on Ant. and Prop., Vol. 55, No. 4, 1095-1102, April 2007.
doi:10.1109/TAP.2007.893378

10. Zhang, X., Y. Peng, Z. D. Chen, and Y. Yu, "Numerical dispersion analysis of radial point interpolation meshless method," 2017 Progress in Electromagnetics Research Symposium --- Fall (PIERS -- FALL), 717-719, Singapore, November 19-22, November 2017.

11. Lee, J.-F., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. on Ant. and Prop., Vol. 45, No. 3, 430-442, March 1997.
doi:10.1109/8.558658

12. José, A. P., G. Ana, G. Oscar, and V. Angel, "Analysis of two alternative ADI-FDTD formulations for transverse-electric waves in lossy materials," IEEE Trans. on Ant. and Prop., Vol. 57, No. 7, 2047-2054, July 2009.

13. Hichem, N. and A. Taoufik, "Unconditional stability analysis of the 3D-radial point interpolation method and Crank-Nicolson scheme," Progress In Electromagnetics Research M, Vol. 68, 119-131, 2018.
doi:10.2528/PIERM17100201

14. Strikwerda, J. C., "Finite Difference Schemes and Partial Differential Equations," Wadawoth Brooks/Cole Advanced Books Software, Pacific Grove, CA, 1989.

15. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, New York, Wiley, 2005.

16. Zhang, Y., S. W. Lü, and J. Zhang, "Reduction of numerical dispersion of 3-D higher order alternating-direction-implicit finite-difference time-domain method with artificial anisotropy," IEEE Trans. on Ant. and Prop., Vol. 57, No. 7, 2416-2428, 2009.

17. Chen, T. S., "Calculation of the parameters of the ridged waveguides," IRE Transactions on Microwave Theory and Techniques, 12-17, January 1957.
doi:10.1109/TMTT.1957.1125084

18. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley and Sons, 2012.

19. Yu, Y. and Z. Chen, "A 3-D radial point interpolation method for meshless time-domain modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 2015-2020, August 2009.
doi:10.1109/TMTT.2009.2025450

20. Chen, Z., C. -F. Wang, and W. J. R. Hoefer, "A unified view of computational electromagnetics," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 2, 955-969, February 2022.
doi:10.1109/TMTT.2021.3138911

21. Juntunen, J. S. and T. D. Tsiboukis, "Reduction of numerical dispersion in FDTD method through artificial anisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 582-588, April 2000.
doi:10.1109/22.842030