Vol. 127
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-28
A Novel Balanced-to-Balanced Differential-Mode Negative Group Delay Microwave Circuit with Excellent Common-Mode Suppression
By
Progress In Electromagnetics Research C, Vol. 127, 61-70, 2022
Abstract
A novel balanced-to-balanced differential-mode negative group delay (NGD) microwave circuit with excellent common-mode suppression is proposed. The proposed circuit consists of two sections of coupled lines, six transmission lines, and four open-circuited stubs. The coupled lines combined with the open-circuited stubs produce the NGD characteristic, which is connected by the λ/2 transmission lines to form a balanced structure for excellent common-mode suppression. To verify the proposed balanced circuit, a microstrip circuit prototype with a center frequency of f0 = 1.0 GHz is designed, fabricated, and measured. When the prototype is excited in differential mode, the measured NGD time at f0 is -3.45 ns with an NGD bandwidth of 16.6 MHz (991.7-1008.3 MHz), insertion loss of less than 2.88 dB, and return loss of more than 11.7 dB. Furthermore, the measured common-mode suppression is greater than 41 dB in the NGD band.
Citation
Zhongbao Wang, Peng Han, Qi Chen, Hongmei Liu, and Shao-Jun Fang, "A Novel Balanced-to-Balanced Differential-Mode Negative Group Delay Microwave Circuit with Excellent Common-Mode Suppression," Progress In Electromagnetics Research C, Vol. 127, 61-70, 2022.
doi:10.2528/PIERC22092904
References

1. Feng, W., W. Che, and Q. Xue, "New balance --- Applications for dual-mode ring resonators in planar balanced circuits," IEEE Microw. Mag., Vol. 20, No. 7, 15-23, Jul. 2019.
doi:10.1109/MMM.2019.2909519

2. Zhang, Y., Y. Wu, Y. Wei, and W. Wang, "Novel planar balanced bandpass filter with wideband common-mode suppression and in-band common-mode noise absorption," Int. J. RF Microw. Comput. Aided Eng., Vol. 31, No. 1, e22483, Jan. 2021.
doi:10.1002/mmce.22483

3. Shi, J., K. Xu, W. Zhang, J. Chen, and G. Zhai, "An approach to 1-to-2N way microstrip balanced power divider," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 12, 4222-4231, Dec. 2016.
doi:10.1109/TMTT.2016.2611495

4. Fernández-Prieto, A., A. Lujambio, F. Martín, J. Martel, F. Medina, and R. R. Boix, "Compact balanced-to-balanced diplexer based on split-ring resonators balanced bandpass filters," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 3, 218-220, Mar. 2018.
doi:10.1109/LMWC.2018.2794824

5. Jiao, L., Y. Wu, W. Zhang, M. Li, Y. Liu, Q. Xue, and Z. Ghassemlooy, "Design methodology for six-port equal/unequal quadrature and rat-race couplers with balanced and unbalanced ports terminated by arbitrary resistances," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 3, 1249-1262, Mar. 2018.
doi:10.1109/TMTT.2017.2778108

6. Ravelo, B., "Theory of coupled line coupler-based negative group delay microwave circuit," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3604-3611, Nov. 2016.
doi:10.1109/TMTT.2016.2604316

7. Chaudhary, G. and Y. Jeong, "Negative group delay phenomenon analysis using finite unloaded quality factor resonators," Progress In Electromagnetics Research, Vol. 156, 55-62, 2016.
doi:10.2528/PIER16041111

8. Ravelo, B., N. Li, F. Wan, and J. Feng, "Design, modeling and synthesis of negative group delay IL-shape topology," IEEE Access, Vol. 7, 153900-153909, 2019.
doi:10.1109/ACCESS.2019.2948843

9. Wan, F., N. Li, B. Ravelo, and J. Ge, "O=O shape low-loss negative group delay microstrip circuit," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 67, No. 10, 1795-1799, Oct. 2020.

10. Wan, F., N. Li, B. Ravelo, W. Rahajandraibe, and S. Lalléchère, "Design of =I= shape stub-based negative group delay circuit," IEEE Des. Test, Vol. 38, No. 2, 78-88, Apr. 2021.
doi:10.1109/MDAT.2020.3002149

11. Shao, T., Z. Wang, S. Fang, Y. Liu, and Z. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336-43343, 2020.
doi:10.1109/ACCESS.2020.2977100

12. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 5, 1116-1125, May 2010.
doi:10.1109/TMTT.2010.2045576

13. Chaudhary, G. and Y. Jeong, "Negative group delay phenomenon analysis in power divider: Coupling matrix approach," IEEE Trans. Compon. Pack. Manuf. Technol., Vol. 7, No. 9, 1543-1551, Sept. 2017.
doi:10.1109/TCPMT.2017.2696972

14. Wu, Y., H. Wang, Z. Zhuang, Y. Liu, Q. Xue, and A. A. Kishk, "A novel arbitrary terminated unequal coupler with bandwidth-enhanced positive and negative group delay characteristics," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 5, 2170-2184, May 2018.
doi:10.1109/TMTT.2018.2809516

15. Ravelo, B., M. Le Roy, and A. Perennec, "Application of negative group delay active circuits to the design of broadband and constant phase shifters," Microw. Opt. Technol. Lett., Vol. 50, No. 12, 3078-3080, Dec. 2008.
doi:10.1002/mop.23883

16. Shi, J., Z. Chen, and K. Xu, "Negative group delay power dividing network with balanced-to-single-ended topology," IET Microw. Antennas Propag., Vol. 13, No. 10, 1705-1710, Aug. 2019.
doi:10.1049/iet-map.2018.6092

17. Zhu, Z., Z. Wang, S. Zhao, H. Liu, and S. Fang, "A novel balanced-to-unbalanced negative group delay power divider with good common-mode suppression," Int. J. RF Microw. Comput. Aided Eng., Vol. 32, No. 7, e23173, Jul. 2022.

18. Zhu, Z., Z. Wang, Y. Meng, S. Fang, and H. Liu, "Balanced microstrip circuit with differential negative group delay characteristics," Cross Strait Radio Science and Wireless Technology Conference, 257-259, Oct. 2021.

19. Wang, Z., S. Zhao, H. Liu, and S. Fang, "A compact dual-band differential negative group delay circuit with wideband common mode suppression," IEEE J. Microw., Vol. 2, No. 4, 720-725, 2022.
doi:10.1109/JMW.2022.3192114