Vol. 126
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-03
A High-Gain Dual-Band Superstates Enabled Antenna for 5G-mm Wave Applications
By
Progress In Electromagnetics Research C, Vol. 126, 125-142, 2022
Abstract
In this Article, the antenna is designed by using different shapes of patch structures on 8.468×9.741 mm2 ground plane. Different shapes like A, H, F, T, and U are simulated by using HFSS Software. For gain enhancement, various techniques on the different shape patches have been applied. The maximum gain achieved in the case of A shape patch with MTM structure and circular reflector with superstates is 14.2 dBi, and the band covered is (36.248-38.764) GHz and (33.384-34.503) GHz. Other shapes like H, F, T, and U are designed by modification in A shape patch, and by applying various techniques like MTM and reflector surface with superstates interesting results have been achieved. The designed antenna is an mm-wave antenna and a novel structure for 5G communications.
Citation
Aafreen Khan, Anwar Ahmad, and Maksud Alam, "A High-Gain Dual-Band Superstates Enabled Antenna for 5G-mm Wave Applications," Progress In Electromagnetics Research C, Vol. 126, 125-142, 2022.
doi:10.2528/PIERC22092807
References

1. Rowe, W. S. T. and R. B. Waterhouse, "Reduction of backward radiation for CPW fed aperture stacked patch antennas on small ground planes," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 6, June 2003.

2. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "FSS properties of a uni-planar EBG and its application in directivity enhancement of a microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1606-1609, 2016.
doi:10.1109/LAWP.2016.2518299

3. Wang, W. and Y. Zheng, "Wideband gain enhancement of high-isolation Fabry-Pérot antenna array with tandem circular parasitic patches and radial gradient PRS," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7959-7964, 2021.
doi:10.1109/TAP.2021.3083781

4. Javor, R. D., X.-D. Wu, and K. Chang, "Design and performance of a microstrip reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 9, September 1995.
doi:10.1109/8.410208

5. Liu, Y., N. Li, Y. Jia, W. Zhang, and Z. Zhou, "Low RCS and high-gain patch antenna based on a holographic metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 492-496, 2019.
doi:10.1109/LAWP.2019.2895117

6. Yang, S., Z. Yan, T. Zhang, M. Cai, F. Fan, and X. Li, "Multifunctional tri-band dual-polarized antenna combining transmitarray and reflectarray," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 6016-6021, 2021.
doi:10.1109/TAP.2021.3060938

7. Prakash, P., M. P. Abegaonkar, A. Basu, and S. K. Koul, "Gain enhancement of a CPW-fed monopole antenna using polarization-insensitive AMC structure," IEEE AntennasandWireless Propagation Letters, Vol. 12, 1315-1318, 2013.
doi:10.1109/LAWP.2013.2285121

8. Liu, Z., P. Wang, and Z. Zeng, "Enhancement of the gain for microstrip antennas using negative permeability metamaterial on Low-Temperature Co-Fired Ceramic (LTCC) substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 429-432, 2013.
doi:10.1109/LAWP.2013.2254697

9. Zhou, B. and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 326-329, 2011.
doi:10.1109/LAWP.2011.2142170

10. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, April 2013.
doi:10.1109/TAP.2012.2237154

11. Denidni, T. A., Y. Coulibaly, and H. Boutayeb, "Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1043-1049, April 2009.
doi:10.1109/TAP.2009.2015809

12. Zhai, G., X. Wang, R. Xie, J. Shi, J. Gao, B. Shi, and J. Ding, "Gain-enhanced planar log-periodic dipole array antenna using nonresonant metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6193-6198, 2019.
doi:10.1109/TAP.2019.2924111

13. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926

14. Xiong, J., Y. Hu, S. Mao, W. Zhang, S. Xiao, and B.-Z. Wang, "Agile beamwidth control and directivity enhancement for aperture radiation with low-profile metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1528-1533, March 2018.
doi:10.1109/TAP.2017.2784455

15. Zada, M., I. A. Shah, and H. Yoo, "Metamaterial-loaded compact high-gain dual-band circularly polarized implantable antenna system for multiple biomedical applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1140-1144, 2019.
doi:10.1109/TAP.2019.2938573

16. Kurvinen, J., H. Kähköne, A. Lehtovuori, J. Ala-Laurinaho, and V. Viikari, "Co-designed mm-wave and LTE handset antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1545-1553, 2019.
doi:10.1109/TAP.2018.2888823

17. Rodriguez-Cano, R., S. Zhang, K. Zhao, and G. F. Pedersen, "Reduction of main beam-blockage in an integrated 5G array with a metal-frame antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3161-3170, May 2019.
doi:10.1109/TAP.2019.2900407

18. Rodriguez-Cano, R., S. Zhang, K. Zhao, and G. F. Pedersen, "Mm-wave beam-steerable endfire array embedded in slotted metal-frame LTE antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3685-3694, 2020.
doi:10.1109/TAP.2020.2963915

19. Cheng, Y. J. and Y. Fan, "Millimeter-wave miniaturized substrate integrated multibeam antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4840-4844, December 2011.
doi:10.1109/TAP.2011.2165497

20. Di Paola, C., K. Zhao, S. Zhang, and G. F. Pedersen, "SIW multibeam antenna array at 30 GHz for 5G mobile devices," IEEE Access, Vol. 7, 73157-73164, 2019.
doi:10.1109/ACCESS.2019.2919579