Vol. 127
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-21
TV-Based Phased Array System Design in BTSs for 5G/IoT Applications
By
Progress In Electromagnetics Research C, Vol. 127, 1-16, 2022
Abstract
Cellular UHF (Ultra High Frequency) transceiver networks and base transceiver station antenna systems comprise high power phase shifters for changing and adjusting the phases or delays of high-power transmitting signals delivered to antenna elements. In this work, theoretical and practical adjustment method of amplitudes and phases for electronic steering of a phased array antenna pattern are illustrated. In otherwords, a high power phase shifter with an asymmetric power divideris designed. The phases are changed and adjusted progressively, and thus the beam direction changes from -60° to 60°. The UHF phase shifter has been simulated in Advanced Design System (ADS) and CST STUDIO SUITE SPARK3D and measured. The simulations show that the designed and manufactured UHF phase shifter can also handle more than 20 KW and can be redesigned to reach up to more than 100 KW RF (Radio Frequency) power (microstrip/stripline structures) and can control/change phases of transmitting/receiving antennas. The phase shifter can be designed on any low loss substrate. By using this method in planar high power phased array antenna systems, 360° planar beam tilting is also achievable.zzz
Citation
Amir Reza Dastkhosh, Mehdi Naseh, Davide Dardari, and Fujiang Lin, "TV-Based Phased Array System Design in BTSs for 5G/IoT Applications," Progress In Electromagnetics Research C, Vol. 127, 1-16, 2022.
doi:10.2528/PIERC22091909
References

1. Wang, J., J. Weitzen, O. Bayat, V. Sevindik, and M. Li, "Interference coordination for millimeter wave communications in 5G networks for performance optimization," EURASIP Journal on Wireless Communications and Networking, Vol. 2019, No. 1, 46, 2019.
doi:10.1186/s13638-019-1368-6

. Zhang, J., E. Bjornson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, "Guest editorial special issue on multiple antenna technologies for beyond 5G --- Part II," IEEE Journal on Selected Areas in CommunicationS, Vol. 38, No. 9, 1941-1944, 2020.
doi:10.1109/JSAC.2020.3000890

3. Oskouei, H. R. D., A. R. Dastkhosh, A. Mirtaheri, and M. Naseh, "A small cost-effective super ultra-wideband microstrip antenna with variable band-notch filtering and improved radiation pattern with 5G/IoT applications," Progress In Electromagnetics Research M, Vol. 83, 191-202, 2019.
doi:10.2528/PIERM19051802

4. Azimzadeh, M. and G. Jelodar, "Trace elements homeostasis in brain exposed to 900 MHz RFW emitted from a BTS-antenna model and the protective role of vitamin E," Journal of Animal Physiology and Animal Nutrition, Vol. 104, No. 5, 1568-1574, 2020.
doi:10.1111/jpn.13360

5. Letaief, K. B., W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, "The roadmap to 6G: AI empowered wireless networks," IEEE Communications Magazine, Vol. 57, No. 8, 84-90, 2019.
doi:10.1109/MCOM.2019.1900271

6. Varrall, G., 5G Spectrum and Standards, Artech House, 2016.

7. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

8. Hansen, R. C., "Phased Array Antennas," John Wiley & Sons, Vol. 213, 2009.

9. Sim, M. S., Y.-G. Lim, S. H. Park, L. Dai, and C.-B. Chae, "Deep learning-based mmWave beam selection for 5G NR/6G with sub-6 GHz channel information: Algorithms and prototype validation," IEEE Access, Vol. 8, 51634-51646, 2020.
doi:10.1109/ACCESS.2020.2980285

10. Jaeschke, T., C. Bredendiek, S. Kuppers, and N. Pohl, "High-precision D-band FMCW-radar sensor based on a wideband SiGe-transceiver MMIC," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 3582-3597, 2014.
doi:10.1109/TMTT.2014.2365460

11. Li, W.-T., Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, and T.-W. Huang, "60-GHz 5-bit phase shifter with integrated VGA phase-error compensation," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 3, 1224-1235, 2013.
doi:10.1109/TMTT.2013.2244226

12. Zheng, Q., Z. Wang, K.Wang, G.Wang, H. Xu, L.Wang, W. Chen, M. Zhou, Z. Huang, and F. Yu, "Design and performance of a wideband Ka-band 5-b MMIC phase shifter," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 5, 482-484, 2017.
doi:10.1109/LMWC.2017.2690828

13. Dey, S., S. K. Koul, A. K. Poddar, and U. L. Rohde, "Reliable and compact 3-and 4-bit phase shifters using MEMS SP4T and SP8T switches," Journal of Microelectromechanical Systems, Vol. 27, No. 1, 113-124, 2018.
doi:10.1109/JMEMS.2017.2782780

14. Garg, R. and A. S. Natarajan, "A 28-GHz low-power phased-array receiver front-end with 360 RTPS phase shift range," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4703-4714, 2017.
doi:10.1109/TMTT.2017.2707414

15. Gu, P. and D. Zhao, "Ka-band CMOS 360 reflective-type phase shifter with +-0.2 dB insertion loss variation using triple-resonating load and dual-voltage control techniques," 2018 IEEE Radio Frequency Integrated Circuits Symposium, RFIC), IEEE, 2018.

16. Kalyoncu, I., E. Ozeren, A. Burak, O. Ceylan, and Y. Gurbuz, "A phase-calibration method for vector-sum phase shifters using a self-generated LUT," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66, No. 4, 1632-1642, 2019.
doi:10.1109/TCSI.2018.2885172

17. Guomin, D. I. N. G., M. Zimmerman, J. Yu, and H. Qin, Base station antennas including wiper phase shifters, U.S. Patent No. 11,081,789, Aug. 3, 2021.

18. Timofeev, I. E., M. L. Zimmerman, and X. Ai, Phase shifter and antenna including phase shifter, U.S. Patent No. 7,907,096, Mar. 15, 2011.

19. Schmutzler, S., Cellular antenna phase shifter positioning using motorized torque lever, U.S. Patent Application No. 12/771,826.

20. Ko, Y.-H., Distributed antenna system interface tray, U.S. Patent No. 10,123,282, Nov. 6, 2018.

21. Farasat, M., D. N. Thalakotuna, Z. Hu, and Y. Yang, "A review on 5G sub-6 GHz base station antenna design challenges," Electronics, Vol. 10, No. 16, 2000, 2021.
doi:10.3390/electronics10162000

22. Wu, Z., B. Wu, Z. Su, and X. Zhang, "Development challenges for 5G base station antennas," 2018 International Workshop on Antenna Technology (iWAT), IEEE, 2018.

23. Yang, Y. and Z. Hu, "Advanced multifunctional antennas for 5G and beyond," 2019 Photonics & Electromagnetics Research Symposium --- Fall, PIERS --- Fall, 2019.

24. Zhang, X., F. Sun, G. Zhang, and L. Hou, "Compact UHF/VHF monopole antennas for CubeSats applications," IEEE Access, Vol. 8, 133360-133366, 2020.
doi:10.1109/ACCESS.2020.3008540

25. Trinh, K. T., J. Feng, S. H. Shehab, and N. C. Karmakar, "1.4 GHz low-cost PIN diode phase shifter for L-band radiometer antenna," IEEE Access, Vol. 7, 95274-95284, 2019.
doi:10.1109/ACCESS.2019.2926140

26. Ahn, H.-R., Asymmetric Passive Components in Microwave Integrated Circuits, Vol. 182, John Wiley & Sons, 2006.
doi:10.1002/0470036966

27. Roper, J. S. and A. F. Peterson, "Reflectarray power handling capability analysis," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI, IEEE, 2022.

28. Vaughan, J. and M. Rodney, "Multipactor," IEEE Transactions on Electron Devices, Vol. 35, No. 7, 1172-1180, 1988.
doi:10.1109/16.3387

29. Kim, H. C., J. P. Verboncoeur, and Y. Y. Lau, "Invited paper --- Modeling RF window breakdown: From vacuum multipactor to RF plasma," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, No. 4, 774-782, Aug. 2007.
doi:10.1109/TDEI.2007.4286505

30. Anza, S., M. Mattes, C. Vicente, J. Gil, D. Raboso, V. E. Boria, and B. Gimeno, "Multipactor theory for multicarrier signals," Physics of Plasmas, Vol. 18, No. 3, 032105, 2011.
doi:10.1063/1.3561821

31. Bahl, I. J., "Average power handling capability of multilayer microstrip lines," International Journal of RF and Microwave Computer-Aided Engineering: Co-sponsored by the Center for Advanced Manufacturing and Packaging of Microwave, Optical, and Digital Electronics, CAMPmode) at the University of Colorado at Boulder, Vol. 11, No. 6, 385-395, 2001.

32. Bahl, I. J. and K. C. Gupta, "Average power-handling capability of microstrip lines," IEE Journal on Microwaves, Optics and Acoustics, Vol. 3, No. 1, 1-4, 1979.
doi:10.1049/ij-moa.1979.0001

33. Garg, R., I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, Artech House, 2013.

34. Parnes, M., "The correlation between thermal resistance and characteristic impedance of microwave transmission lines," Microwave Journal, Vol. 43, No. 3, 82-82, 2000.