Vol. 128
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-29
Electromagnetic Diffraction by a Slotted Cylinder with the Fractional Boundary Condition
By
Progress In Electromagnetics Research C, Vol. 128, 61-71, 2023
Abstract
This study investigates several substantial questions arising in the diffraction by circular surfaces with the fractional boundary condition, which is the generalization of Dirichlet and Neumann boundary conditions. The study analyses the electromagnetic E-polarized plane wave diffraction by a slotted circular cylinder with the fractional boundary condition. For the first time, the fractional boundary condition regarding circular geometries is employed in the literature. The resonance characteristics for different boundary conditions, angle of incidence, and aperture sizes are analyzed. The new resonances are observed when the surface is different from the perfect electric or magnetic conducting surface.
Citation
Kamil Karaçuha, Vasil Tabatadze, Ömer Faruk Alperen, Ertuğrul Karaçuha, and Eldar Veliev, "Electromagnetic Diffraction by a Slotted Cylinder with the Fractional Boundary Condition," Progress In Electromagnetics Research C, Vol. 128, 61-71, 2023.
doi:10.2528/PIERC22090706
References

1. Frezza, F., F. Mangini, and N. Tedeschi, "Introduction to electromagnetic scattering: Tutorial," JOSA A, Vol. 35, 163-173, 2018.
doi:10.1364/JOSAA.35.000163

2. Bayvel, L. P., Electromagnetic Scattering and Its Applications, Springer Science & Business Media, 2012.

3. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 2012.

4. Vavilov, V. N., E. I. Veliev, V. V. Veremey, and V. P. Shestopalov, "Effective method of solution of diffraction problems for waves incident on a cylindrical screen," Sov. Phys. Dokl., 640-644, 1990.

5. Beren, J., "Diffraction of an H-polarized electromagnetic wave by a circular cylinder with an infinite axial slot," IEEE Trans. Antennas Propag., Vol. 31, 419-425, 1983.
doi:10.1109/TAP.1983.1143072

6. Veliev, E. I. and V. P. Shestopalov, "Wave diffraction by intersecting circular cylindrical bodies," Akad. Nauk SSSR Dokl., 1094-1098, 1985.

7. Nosich, A. I., Y. Okuno, and T. Shiraishi, "Scattering and absorption of E- and H-polarized plane waves by a circularly curved resistive strip," Radio Sci., Vol. 31, 1733-1742, 1996.
doi:10.1029/96RS02183

8. Buyukaksoy, A. and G. Uzgoren, "Diffraction of high-frequency waves by a cylindrically curved surface with different face impedances," IEEE Trans. Antennas Propag., Vol. 36, 690-695, 1988.
doi:10.1109/8.192146

9. Umul, Y. Z., "Physical optics theory for the scattering of waves by an impedance strip," Opt. Commun., Vol. 284, 1760-1765, 2011.
doi:10.1016/j.optcom.2010.12.054

10. Veliev, E. I., T. M. Ahmedov, and M. V. Ivakhnychenko, "Fractional operators approach and fractional boundary conditions," Electromagn. Waves, 28, 2011.

11. Karacuha, K., V. Tabatadze, and E. I. Veliyev, "Line source diffraction by double strips with different fractional boundary conditions," Int. J. Appl. Electromagn. Mech., Vol. 67, 165-181, 2021.
doi:10.3233/JAE-210006

12. Tabatadze, V., K. Karacuha, and E. I. Veliyev, "The solution of the plane wave diffraction problem by two strips with different fractional boundary conditions," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 7, 881-893, 2020.
doi:10.1080/09205071.2020.1759461

13. Veliev, E., M. Ivakhnychenko, and T. Ahmedov, "Fractional boundary conditions in plane waves diffraction on a strip," Progress In Electromagnetics Research, Vol. 79, 443-462, 2008.
doi:10.2528/PIER07102406

14. Karacuha, K., "General approach to the line source electromagnetic scattering by a circular strip: Both E- and H-polarisation cases," IET Microwaves, Antennas Propag., Vol. 15, 1721-1734, 2021.
doi:10.1049/mia2.12189

15. Podlubny, I., "Fractional differential equations," Math. Sci. Eng., Vol. 198, 41-119, 1999.

16. Veliev, E. I., A. I. Nosich, and V. P. Shestopalov, "Propagation of electromagnetic waves in a cylindrical waveguide with a longitudinal slit," Radio Eng. Electron. Phys., Vol. 22, 466-473, 1977.

17. Karacuha, K., V. Tabatadze, and E. I. Veliev, "Plane wave diffraction by strip with an integral boundary condition," Turkish J. Electr. Eng. Comput. Sci., Vol. 28, 1776-1790, 2020.
doi:10.3906/elk-1906-170

18. Brychkov, Y. A., Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas, Chapman and Hall/CRC, 2008.
doi:10.1201/9781584889571

19. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propag., Vol. 20, 442-446, 1972.
doi:10.1109/TAP.1972.1140243

20. Ikiz, T., S. Koshikawa, K. Kobayashi, E. I. Veliev, and A. H. Serbest, "Solution of the plane wave diffraction problem by an impedance strip using a numerical-analytical method: E-polarized case," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 3, 315-340, 2001.
doi:10.1163/156939301X00481

21. Tabatadze, V., K. Karacuha, and E. I. Veliyev, "The fractional derivative approach for the diffraction problems: Plane wave diffraction by two strips with the fractional boundary conditions," Progress In Electromagnetics Research C, Vol. 95, 251-264, 2019.
doi:10.2528/PIERC19062505

22. Karacuha, K., V. Tabatadze, O. F. Alperen, and E. Veliev, "A new approach in electromagnetic plane wave diffraction by two concentric slotted cylinders with variably placed slits: E and H polarized cases," IET Microwaves, Antennas Propag., Vol. 16, 437-450, 2022.
doi:10.1049/mia2.12252

23. Prudnikov, A. P., I. A. Brychkov, and O. I. Marichev, Integrals and Series: Special Functions, CRC Press, 1986.

24. Vavilov, V. N. and E. I. Veliev, "Electromagnetic wave diffraction by cylindrical bodies with edges," Electromagnetics, Vol. 13, 339-357, 1993.
doi:10.1080/02726349308908357

25. Karacuha, K., V. Tabatadze, and E. I. Veliyev, "Electromagnetic plane wave diffraction by a cylindrical arc with edges: H-polarized case," Int. J. Appl. Electromagn. Mech., 1-15, 2022.

26. Ivakhnychenko, M., E. Veliev, and T. Ahmedov, "Scattering properties of the strip with fractional boundary conditions and comparison with the impedance strip," Progress In Electromagnetics Research C, Vol. 2, 189-205, 2008.
doi:10.2528/PIERC08031502