1. Rajus, V. S., J. Boi-Ukeme, R. S. Jiresal, et al. "Measured data reliability for building performance and maintenance," IEEE Instrumentation & Measurement Magazine, Vol. 25, No. 1, 55-61, Feb. 2022.
doi:10.1109/MIM.2022.9693445
2. Mahmoud, A., H. Sadruddin, P. Coser, and M. Atia, "Integration of wearable sensors measurements for indoor pedestrian tracking," IEEE Instrumentation & Measurement Magazine, Vol. 25, No. 1, 46-54, Feb. 2022.
doi:10.1109/MIM.2022.9693454
3. Chen, S., J. Wang, L. Zhang, et al. "When internet of things meets e-health: An indoor temperature monitoring and control approach," IEEE Internet of Things Magazine, Vol. 4, No. 3, 12-16, Sep. 2021.
doi:10.1109/IOTM.0011.2000054
4. Sotres, P., J. R. Santana, L. Sanchez, J. Lanza, and L. Munoz, "Practical lessons from the deployment and management of a smart city internet-of-things infrastructure: The SmartSantander testbed case," IEEE Access, Vol. 5, 14309-14322, 2017.
doi:10.1109/ACCESS.2017.2723659
5. Yu, B.-Y., Z.-H. Wang, L. Ju, et al. "Flexible and wearable hybrid RF and solar energy harvesting system," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 2223-2233, Mar. 2022.
doi:10.1109/TAP.2021.3118814
6. Tan, T., Z. Yan, H. Zou, K. Ma, F. Liu, L. Zhao, Z. Peng, and W. Zhang, "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Vol. 254, 2019.
7. Ferreira, D., L. Sismeiro, A. Ferreira, R. F. S. Caldeirinha, T. R. Fernandes, and I. Cuinas, "Hybrid FSS and rectenna design for wireless power harvesting," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2038-2042, May 2016.
doi:10.1109/TAP.2016.2536168
8. Pandey, R., A. K. Shankhwar, and A. Singh, "Design and analysis of rectenna at 2.42 GHz for Wi-Fi energy harvesting," Progress In Electromagnetics Research C, Vol. 117, 89-98, 2021.
doi:10.2528/PIERC21100409
9. Pandey, R., A. K. Shankhwar, and A. Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
doi:10.2528/PIERC20121102
10. Chuma, E. L., Y. Iano, M. S. Costa, L. T. Manera, and L. L. B. Roger, "A compact-integrated recon gurable rectenna array for RF power harvesting with a practical physical structure," Progress In Electromagnetics Research M, Vol. 70, 89-98, 2018.
11. Shin, J., M. Seo, J. Choi, J. So, and C. Cheon, "A compact and wideband circularly polarized rectenna with high efficiency at X-band," Progress In Electromagnetics Research, Vol. 145, 163-173, 2014.
doi:10.2528/PIER14012803
12. Zhekov, S. S., O. Franek, and G. F. Pedersen, "Dielectric properties of common building materials for ultrawideband propagation studies [measurements corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 1, 72-81, Feb. 2020.
doi:10.1109/MAP.2019.2955680
13. Baker-Jarvis, J., M. Janezic, B. Riddle, R. Johnk, C. Holloway, R. Geyer, and C. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, and negative-index materials," Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD, 2005.
14. Cuinas, I. and M. G. Sanchez, "Permittivity and conductivity measurements of building materials at 5.8 GHz and 41.5 GHz," Wireless Personal Communications, Vol. 20, 93-100, 2002.
doi:10.1023/A:1013886209664
15. Cuinas, I., et al., "Frequency dependence of dielectric constant of construction materials in microwave and millimeter-wave bands," Microwave and Optical Technology Letters, Vol. 30, 123-124, 2001.
doi:10.1002/mop.1238
16. Antoine, R., "Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation," Journal of Applied Geophysics, Vol. 40, 89-94, 1998.
17. Oliveira, J. G. D., N. Junior, M. G. Pinto, et al. "A new planar microwave sensor for building materials complex permittivity characterization," Sensors, Vol. 20, No. 21, 6328, 2020.
doi:10.3390/s20216328
18. Nepa, P. and H. Rogier, "Wearable antennas for off-body radio links at VHF and UHF bands: Challenges, the state of the art, and future trends below 1 GHz," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 30-52, Oct. 2015.
doi:10.1109/MAP.2015.2472374
19. Del-Rio-Ruiz, R., J. Lopez-Garde, J. Legarda, S. Lemey, O. Caytan, and H. Rogier, "Reliable lab-scale construction process for electromagnetically coupled textile microstrip patch antennas for the 2.45 GHz ISM band," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 153-157, Jan. 2020.
doi:10.1109/LAWP.2019.2956238
20. Sipila, E., J. Virkki, L. Sydanheimo, and L. Ukkonen, "Experimental study on brush-painted metallic nanoparticle UHF RFID tags on wood substrates," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 301-304, 2015.
doi:10.1109/LAWP.2014.2362966
21. Verma, A., C. Fumeaux, V. T. Truong, and B. D. Bates, "A 2 GHz Polypyrrole microstrip patch antenna on Plexiglas substrate," 2009 Asia Pacific Microwave Conference, 36-39, 2009.
doi:10.1109/APMC.2009.5385500
22. Youn, S., D. Jang, N. K. Kong, and H. Choo, "Design of a printed 5G monopole antenna with periodic patch director on the laminated window glass," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 2, 297-301, 2022.
doi:10.1109/LAWP.2021.3128648
23. Multi-Plastics, , , http://multi-plastics.com/ (accessed Oct. 16, 2022).
24. Novacentrix, , Metalon conductive inks for flexible printed electronics, https://www.novacentrix.com/ (accessed Oct. 16, 2022).
25. Vandelle, E., D. H. N. Bui, T. Vuong, G. Ardila, K. Wu, and S. Hemour, "Harvesting ambient RF energy efficiently with optimal angular coverage," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1862-1873, Mar. 2019.
doi:10.1109/TAP.2018.2888957
26. Bruker "High-value life science and material research and diagnostics solutions,", https://www.bruker.com/en.html (accessed Oct. 16, 2022).
27. Testing Machines Inc., Industrial Physics, Materials testing, https://industrialphysics.com/brands/testing-machines-inc/ (accessed Oct. 16, 2022).
28. Signatone, , , https://signatone.com/ (Accessed Oct. 16, 2022).
29. Chen, E. and S. Y. Chou, "Characteristics of coplanar transmission lines on multilayer substrates: Modeling and experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 6, 939-945, Jun. 1997.
doi:10.1109/22.588606
30. Goverdhanam, K., R. N. Simons, and L. P. B. Katehi, "Coplanar stripline components for high-frequency applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 10, 1725-1729, Oct. 1997.
doi:10.1109/22.641719
31. Antonio Estrada, J., E. Kwiatkowski, A. Lopez-Yela, et al. "RF-harvesting tightly coupled rectenna array tee-shirt with greater than octave bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 9, 3908-3919, Sept. 2020.
doi:10.1109/TMTT.2020.2988688