Vol. 125
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-16
Printed Fractal Folded Coplanar-Strips-Fed Array Rectenna for IoE Applications
By
Progress In Electromagnetics Research C, Vol. 125, 161-177, 2022
Abstract
This paper presents a low-cost antenna integrable to a large set of indoor common building materials. Employing the printing technology on thin transparent polyethylene terephthalate material and using available building materials not only leads to a low-cost environmentally friendly solution for the expected massive sensor deployment but also eliminates the dispersive behavior of the materials that are interacting with them. A coplanar-strips fed fractal folded antenna element was designed and validated experimentally with four different materials including gypsum, plywood, and plexiglass. The aesthetically viable ground-free antenna achieves wideband performance and radiates in the broadside plane perpendicularly to the wall. The single antenna element covers the frequency band of 2.18-3.96 GHz with a gain of 1 dBi at 2.4 GHz. To take advantage of the large available surface, a high efficiency 2.4 GHz array rectenna for powering electronic devices intended for IoE technology is proposed. The proposed array rectenna has a dimension of 384×354×6.475 mm3 and employs a single diode as the rectifier element. The measured results for the presented array rectenna reveal an AC-DC power-conversion-efficiency (PCE) of more than 20% for input powers as low as 0.025 μW/cm2 with a peak PCE of 61.3% at 4.03 μW/cm2.
Citation
Zahra Badamchi, Ngoc Duc Trinh, Chloe Bois, and Tarek Djerafi, "Printed Fractal Folded Coplanar-Strips-Fed Array Rectenna for IoE Applications," Progress In Electromagnetics Research C, Vol. 125, 161-177, 2022.
doi:10.2528/PIERC22080606
References

1. Rajus, V. S., J. Boi-Ukeme, R. S. Jiresal, et al. "Measured data reliability for building performance and maintenance," IEEE Instrumentation & Measurement Magazine, Vol. 25, No. 1, 55-61, Feb. 2022.
doi:10.1109/MIM.2022.9693445

2. Mahmoud, A., H. Sadruddin, P. Coser, and M. Atia, "Integration of wearable sensors measurements for indoor pedestrian tracking," IEEE Instrumentation & Measurement Magazine, Vol. 25, No. 1, 46-54, Feb. 2022.
doi:10.1109/MIM.2022.9693454

3. Chen, S., J. Wang, L. Zhang, et al. "When internet of things meets e-health: An indoor temperature monitoring and control approach," IEEE Internet of Things Magazine, Vol. 4, No. 3, 12-16, Sep. 2021.
doi:10.1109/IOTM.0011.2000054

4. Sotres, P., J. R. Santana, L. Sanchez, J. Lanza, and L. Munoz, "Practical lessons from the deployment and management of a smart city internet-of-things infrastructure: The SmartSantander testbed case," IEEE Access, Vol. 5, 14309-14322, 2017.
doi:10.1109/ACCESS.2017.2723659

5. Yu, B.-Y., Z.-H. Wang, L. Ju, et al. "Flexible and wearable hybrid RF and solar energy harvesting system," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 2223-2233, Mar. 2022.
doi:10.1109/TAP.2021.3118814

6. Tan, T., Z. Yan, H. Zou, K. Ma, F. Liu, L. Zhao, Z. Peng, and W. Zhang, "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Vol. 254, 2019.

7. Ferreira, D., L. Sismeiro, A. Ferreira, R. F. S. Caldeirinha, T. R. Fernandes, and I. Cuinas, "Hybrid FSS and rectenna design for wireless power harvesting," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2038-2042, May 2016.
doi:10.1109/TAP.2016.2536168

8. Pandey, R., A. K. Shankhwar, and A. Singh, "Design and analysis of rectenna at 2.42 GHz for Wi-Fi energy harvesting," Progress In Electromagnetics Research C, Vol. 117, 89-98, 2021.
doi:10.2528/PIERC21100409

9. Pandey, R., A. K. Shankhwar, and A. Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
doi:10.2528/PIERC20121102

10. Chuma, E. L., Y. Iano, M. S. Costa, L. T. Manera, and L. L. B. Roger, "A compact-integrated recon gurable rectenna array for RF power harvesting with a practical physical structure," Progress In Electromagnetics Research M, Vol. 70, 89-98, 2018.

11. Shin, J., M. Seo, J. Choi, J. So, and C. Cheon, "A compact and wideband circularly polarized rectenna with high efficiency at X-band," Progress In Electromagnetics Research, Vol. 145, 163-173, 2014.
doi:10.2528/PIER14012803

12. Zhekov, S. S., O. Franek, and G. F. Pedersen, "Dielectric properties of common building materials for ultrawideband propagation studies [measurements corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 1, 72-81, Feb. 2020.
doi:10.1109/MAP.2019.2955680

13. Baker-Jarvis, J., M. Janezic, B. Riddle, R. Johnk, C. Holloway, R. Geyer, and C. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, and negative-index materials," Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD, 2005.

14. Cuinas, I. and M. G. Sanchez, "Permittivity and conductivity measurements of building materials at 5.8 GHz and 41.5 GHz," Wireless Personal Communications, Vol. 20, 93-100, 2002.
doi:10.1023/A:1013886209664

15. Cuinas, I., et al., "Frequency dependence of dielectric constant of construction materials in microwave and millimeter-wave bands," Microwave and Optical Technology Letters, Vol. 30, 123-124, 2001.
doi:10.1002/mop.1238

16. Antoine, R., "Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation," Journal of Applied Geophysics, Vol. 40, 89-94, 1998.

17. Oliveira, J. G. D., N. Junior, M. G. Pinto, et al. "A new planar microwave sensor for building materials complex permittivity characterization," Sensors, Vol. 20, No. 21, 6328, 2020.
doi:10.3390/s20216328

18. Nepa, P. and H. Rogier, "Wearable antennas for off-body radio links at VHF and UHF bands: Challenges, the state of the art, and future trends below 1 GHz," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 30-52, Oct. 2015.
doi:10.1109/MAP.2015.2472374

19. Del-Rio-Ruiz, R., J. Lopez-Garde, J. Legarda, S. Lemey, O. Caytan, and H. Rogier, "Reliable lab-scale construction process for electromagnetically coupled textile microstrip patch antennas for the 2.45 GHz ISM band," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 153-157, Jan. 2020.
doi:10.1109/LAWP.2019.2956238

20. Sipila, E., J. Virkki, L. Sydanheimo, and L. Ukkonen, "Experimental study on brush-painted metallic nanoparticle UHF RFID tags on wood substrates," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 301-304, 2015.
doi:10.1109/LAWP.2014.2362966

21. Verma, A., C. Fumeaux, V. T. Truong, and B. D. Bates, "A 2 GHz Polypyrrole microstrip patch antenna on Plexiglas substrate," 2009 Asia Pacific Microwave Conference, 36-39, 2009.
doi:10.1109/APMC.2009.5385500

22. Youn, S., D. Jang, N. K. Kong, and H. Choo, "Design of a printed 5G monopole antenna with periodic patch director on the laminated window glass," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 2, 297-301, 2022.
doi:10.1109/LAWP.2021.3128648

23. Multi-Plastics, , , http://multi-plastics.com/ (accessed Oct. 16, 2022).

24. Novacentrix, , Metalon conductive inks for flexible printed electronics, https://www.novacentrix.com/ (accessed Oct. 16, 2022).

25. Vandelle, E., D. H. N. Bui, T. Vuong, G. Ardila, K. Wu, and S. Hemour, "Harvesting ambient RF energy efficiently with optimal angular coverage," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1862-1873, Mar. 2019.
doi:10.1109/TAP.2018.2888957

26. Bruker "High-value life science and material research and diagnostics solutions,", https://www.bruker.com/en.html (accessed Oct. 16, 2022).

27. Testing Machines Inc., Industrial Physics, Materials testing, https://industrialphysics.com/brands/testing-machines-inc/ (accessed Oct. 16, 2022).

28. Signatone, , , https://signatone.com/ (Accessed Oct. 16, 2022).

29. Chen, E. and S. Y. Chou, "Characteristics of coplanar transmission lines on multilayer substrates: Modeling and experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 6, 939-945, Jun. 1997.
doi:10.1109/22.588606

30. Goverdhanam, K., R. N. Simons, and L. P. B. Katehi, "Coplanar stripline components for high-frequency applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 10, 1725-1729, Oct. 1997.
doi:10.1109/22.641719

31. Antonio Estrada, J., E. Kwiatkowski, A. Lopez-Yela, et al. "RF-harvesting tightly coupled rectenna array tee-shirt with greater than octave bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 9, 3908-3919, Sept. 2020.
doi:10.1109/TMTT.2020.2988688