1. Chiba, A., K. Kiyota, N. Hoshi, M. Takemoto, and S. Ogasawara, "Development of a rare-earth-free SR motor with high torque density for hybrid vehicles," IEEE Transactions on Energy Conversion, Vol. 30, No. 1, 175-182, March 2015.
doi:10.1109/TEC.2014.2343962
2. Gerada, D., A. Mebarki, N. L. Brown, C. Gerada, A. Cavagnino, and A. Boglietti, "High-speed electrical machines: Technologies, trends, and developments," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 2946-2959, June 2014.
doi:10.1109/TIE.2013.2286777
3. Ling, X., B. Li, L. Gong, Y. Huang, and C. Liu, "Simulation of switched reluctance motor drive system based on multi-physics modeling method," IEEE Access, Vol. 5, 26184-26189, 2017.
doi:10.1109/ACCESS.2017.2775340
4. Han, G., H. Chen, and G. Guan, "Low-cost SRM drive system with reduced current sensors and position sensors," IET Electric Power Applications, Vol. 13, No. 7, 853-862, July 2019.
doi:10.1049/iet-epa.2018.5209
5. Sun, Q., J. Wu, C. Gan, Y. Hu, N. Jin, and J. Guo, "A new phase current reconstruction scheme for four-phase SRM drives using improved converter topology without voltage penalty," IEEE Transactions on Industrial Electronics, Vol. 65, No. 1, 133-144, January 2018.
doi:10.1109/TIE.2017.2721898
6. Krishnan, R., S.-Y. Park, and K. Ha, "Theory and operation of a four-quadrant switched reluctance motor drive with a single controllable switch-the lowest cost four-quadrant brushless motor drive," IEEE Transactions on Industry Applications, Vol. 41, No. 4, 1047-1055, July-August 2005.
doi:10.1109/TIA.2005.851019
7. Gan, C., J. Wu, Q. Sun, W. Kong, H. Li, and Y. Hu, "A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications," IEEE Access, Vol. 6, 31430-31443, 2018.
doi:10.1109/ACCESS.2018.2837111
8. Mishra, A. K. and B. Singh, "Self-governing single-stage photovoltaic water pumping system with voltage balancing control for a four-phase SRM drive," IET Electric Power Applications, Vol. 14, No. 1, 119-130, January 2020.
doi:10.1049/iet-epa.2019.0360
9. Borg Bartolo, J., M. Degano, J. Espina, and C. Gerada, "Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application," IEEE Transactions on Industrial Electronics, Vol. 64, No. 2, 988-997, February 2017.
doi:10.1109/TIE.2016.2618342
10. Ho, C., J.Wang, K. Hu, and C. Liaw, "Development and operation control of a switched-reluctance motor driven flywheel," IEEE Transactions on Power Electronics, Vol. 34, No. 1, 526-5537, January 2019.
doi:10.1109/TPEL.2018.2814790
11. Liang, J., L. Jian, G. Xu, and Z. Shao, "Analysis of electromagnetic behavior in switched reluctance motor for the application of integrated air conditioner on-board charger system," Progress In Electromagnetics Research, Vol. 124, 347-364, 2012.
doi:10.2528/PIER11112501
12. Isobe, K., K. Nakamura, and O. Ichinokura, "A consideration of high speed SR motor for electric power tools," Journal of the Magnetics Society of Japan, Vol. 38, No. 5, 194-198, 2014.
doi:10.3379/msjmag.1409R001
13. Mecrow, B. C., E. A. El-Kharashi, J. W. Finch, and A. G. Jack, "Segmental rotor switched reluctance motors with single-tooth windings," IEE Pro. --- Electric Power Applications, Vol. 150, No. 5, 591-599, September 9, 2003.
doi:10.1049/ip-epa:20030366
14. Hayashi, H., K. Nakamura, A. Chiba, T. Fukao, K. Tungpimolrut, and D. Dorrell, "Efficiency improvements of switched reluctance motors with high-quality iron steel and enhanced conductor slot fill," IEEE Transactions on Energy Conversion, Vol. 24, No. 4, 819-825, December 2009.
doi:10.1109/TEC.2009.2025425
15. Li, Y., S. Ravi, and D. C. Aliprantis, "Tooth shape optimization of switched reluctance motors for improved torque profiles," Power & Energy Society General Meeting, 1-7, July 26-30, 2015.
16. Jing, L. and J. Cheng, "Research on torque ripple optimization of switched reluctance motor based on finite element method," Progress In Electromagnetics Research M, Vol. 74, 115-123, 2018.
doi:10.2528/PIERM18071104
17. Li, Q., A. Xu, L. Zhou, and C. Shang, "A deadbeat current control method for switched reluctance motor," Progress In Electromagnetics Research Letters, Vol. 91, 123-128, 2020.
doi:10.2528/PIERL20032103
18. Wang, S., Z. Hu, and X. Cui, "Research on novel direct instantaneous torque control strategy for switched reluctance motor," IEEE Access, Vol. 8, 66910-66916, 2020.
doi:10.1109/ACCESS.2020.2986393
19. Deng, X., B. Mecrow, H. Wu, and R. Martin, "Design and development of low torque ripple variable-speed drive system with six-phase switched reluctance motors," IEEE Transactions on Energy Conversion, Vol. 33, No. 1, 420-429, March 2018.
doi:10.1109/TEC.2017.2753286
20. Cao, X., J. Zhou, C. Liu, and Z. Deng, "Advanced control method for a single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement," IEEE Transactions on Energy Conversion, Vol. 32, No. 4, 1533-1543, December 2017.
doi:10.1109/TEC.2017.2719160
21. Chen, C., H. Guo, and G. Zhang, "SOSM direct torque and direct suspension force control for double stator bearingless switched reluctance motor," Progress In Electromagnetics Research C, Vol. 96, 179-192, 2019.
doi:10.2528/PIERC19071201
22. Gecer, B. and N. F. O. Serteller, "Understanding switched reluctance motor analysis using ANSYS/Maxwell," 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 446-449, Delft, Netherlands, 2020.
23. Miller, T. J. E., Switched Reluctance Motors and Their Control, CRC Press, London, U.K., 1993.
24. Lawrenson, P. J., J. M. Stephenson, and P. T. Blenkinsop, "Variable-speed switched reluctance motors," Electric Power Applications IEE Proceedings B, Vol. 127, No. 4, 253-265, July 1980.
doi:10.1049/ip-b.1980.0034
25. Li, Z., L. Zheng, and W. Yang, "Research on torque ripple and structure optimization of switched reluctance motor," Electric Machines and Control, Vol. 22, No. 6, 11-21, July 2018.
26. Krishnan, R., M. Abouzeid, and X. Mang, "A design procedure for axial field switched reluctance motors," IEEE 1990 Industry Applications Society Annual Meeting, 241-246, 1990.
doi:10.1109/IAS.1990.152193
27. Ye, J., B. Bilgin, and A. Emadi, "An offline torque sharing function for torque ripple reduction of switched reluctance motor drives," IEEE Transactions on Energy Conversion, Vol. 30, No. 2, 726-735, June 2015.
doi:10.1109/TEC.2014.2383991
28. Lin, J., N. Schofield, and A. Emadi, "External-rotor 6-10 switched reluctance motor for an electric bicycle," Proc. IECON, 348-356, 2013.
29. Li, H., E. Fairall, B. Bilgin, and A. Emadi, "Performance evaluation of a high-speed high-power switched reluctance motor drive," Proc. APEC, 1337-1342, 2015.
30. Gupta, T. D., K. Chaudhary, R. M. Elavarasan, R. K. Saket, I. Khan, and E. Hossain, "Design modification in single-tooth winding double-stator switched reluctance motor for torque ripple mitigation," IEEE Access, Vol. 9, 19078-19096, 2021, doi: 10.1109/ACCESS.2021.3052828.
doi:10.1109/ACCESS.2021.3052828
31. Das Gupta, T. and K. Chaudhary, "Research on torque ripple minimization of double-stator switched reluctance motor using finite element method," Advances in Electrical and Computer Engineering, Vol. 21, No. 4, 135, 2021.
doi:10.4316/AECE.2021.04015
32. Das Gupta, T. and K. Chaudhary, "Finite element method based design and analysis of a low torque ripple double-stator switched reluctance motor," Progress In Electromagnetics Research C, Vol. 111, 191-206, 2021.
doi:10.2528/PIERC21022001
33. Li, Q., A. Xu, L. Zhou, and C. Shang, "A deadbeat current control method for switched reluctance motor," Progress In Electromagnetics Research Letters, Vol. 91, 123-128, 2020.
doi:10.2528/PIERL20032103
34. Lin, J., T. Lambert, Y. Yang, B. Bilgin, R. Lankin, and A. Emadi, "A novel axial flux switched reluctance motor with multi-level air gap geometry," 2016 IEEE Electrical Power and Energy Conference (EPEC), 1-8, 2016, doi: 10.1109/EPEC.2016.7771732.
35. Huang, C., J. Duan, W. Liu, and Y. Wu, "Optimizing turn-on angle and external rotor pole shape to suppress torque ripple of a novel switched reluctance motor," Progress In Electromagnetics Research M, Vol. 107, 243-257, 2022.