1. Pellegrino, G., A. Vacate, P. Guglielmo, and B. Boazzo, "Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 803-811, Feb. 2012.
doi:10.1109/TIE.2011.2151825
2. Cheng, M., P. Han, and W. Hua, "General airgap field modulation theory for electrical machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6063-6074, Aug. 2017.
doi:10.1109/TIE.2017.2682792
3. Jahns, T. M., "Motion control with permanent-magnet AC machines," IEEE Trans. Industry Applications, Vol. 82, No. 8, 1241-1252, 1994.
4. Sneyers, B., D. W. Novotny, and T. A. Lipo, "Field weakening in buried permanent magnet AC motor drives," IEEE Transactions on Industry Applications, Vol. 21, No. 2, 398-407, 1985.
doi:10.1109/TIA.1985.349661
5. Chen, J., J. Li, et al. "Analysis, modeling, and current trajectory control of magnetization state manipulation in variable-flux permanent magnet machines," IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, 5133-5143, 2018.
doi:10.1109/TIE.2018.2868306
6. Jayarajan, R., N. Fernando, and I. U. Nutkani, "A review on variable flux machine technology: Topologies, control strategies and magnetic materials," IEEE Access, Vol. 7, 70141-70156, 2019.
doi:10.1109/ACCESS.2019.2918953
7. Takaaki, I., N. Tsuyoshi, O. Sohei, et al. "Manufacturing and control of a variable magnetic flux motor prototype with a mechanical adjustment method," Electrical Engineering in Japan, Vol. 199, No. 1, 57-66, 2017.
doi:10.1002/eej.22950
8. Eiki, M., N. Noboru, and H. Katsuhiro, "Variable flux permanent magnet motor utilizing centrifugal force," International Journal of Applied Electromagnetics and Mechanics, Vol. 521, No. 2, 563-569, 2016.
9. Zhu, Z. Q., M. M. J. Al-Ani, X. Liu, et al. "A mechanical flux weakening method for switched flux permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 30, No. 2, 806-815, 2015.
doi:10.1109/TEC.2014.2380851
10. Del Ferraro, L., F. Caricchi, et al. "Analysis and comparison of a speed-dependant and a torque-dependant mechanical device for wide constant power speed range in AFPM starter/alternators," IEEE Transactions on Power Electronics, Vol. 3, 720-729, 2006.
doi:10.1109/TPEL.2006.872377
11. Liu, X., Y. Li, Z. Liu, et al. "Analysis and experimental investigation on flux-adjusting characteristic for a mechanical flux-adjusting axial PM synchronous machine," Transactions of China Electrotechnical Society, Vol. 33, No. 5, 9, 2018.
doi:10.1149/2.0801802jes
12. Liu, X., J. Xiao, H. Xu, et al. "Analysis of flux weakening performance of a novel variable flux permanent magnet synchronous machine with rotating magnetic pole," Transactions of China Electrotechnical Society, Vol. 35, No. 15, 9, 2020.
13. Liu, X., T. Sun, Y. Zou, et al. "Modelling and analysis of a novel mechanical-variable-flux IPM machine with rotatable magnetic poles," IET Electric Power Applications, Vol. 14, No. 4, 2020.
14. Cheng, S., C. Li, and B. Kou, "Research on the variable exciting function of a variable exciting magnetic reluctance PMSM," Proceedings of the CSEE, Vol. 27, No. 033, 17-21, 2007.
15. Chai, F. and Y. Bi, "Research review of flux-weakening methods of axial flux permanent magnet synchronous machine," Micromotors, Vol. 48, No. 02, 69-76, 2015.
16. Cao, Y., L. Feng, R. Mao, and K. Li, "Analysis of analytical magnetic field and flux regulation characteristics of axial-flux permanent magnet memory machine," IEEE Transactions on Magnetics, Early Access Article, 2022.
17. Ceylan, D., K. O. Boynov, and E. A. Lomonova, "Multi-objective optimization of a variable flux reluctance machine for high-torque operations," 2022 23rd International Conference on the Computation of Electromagnetic Fields (COMPUMAG), 1-4, 2022.
18. Liu, W., H. Yang, H. Lin, F. Peng, S. Lyu, and X. Huang, "Thermal modeling and analysis of hybrid-magnetic-circuit variable flux memory machine," IEEE Transactions on Industry Applications, 2022.