Vol. 123
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-08-23
A Fault-Tolerant Control Strategy for d -PMSG Wind Power Generation System
By
Progress In Electromagnetics Research C, Vol. 123, 75-89, 2022
Abstract
Aiming at the problem of motor speed decrease in direct-drive permanent magnet synchronous generator (D-PMSG) wind power generation system after permanent magnet (PM) demagnetization faults, a demagnetization fault-tolerant control strategy in D-PMSG wind power generation system is proposed. Firstly, the D-PMSG mathematical model is described in normal and demagnetization. Secondly, an extended Kalman filter (EKF) observer is designed to observe the PM flux online. Then, flux linkage parameters are introduced into the two-vector model predictive fault-tolerant control so that the increase of stator current is controlled within the limit range. Meanwhile, the motor speed can follow the change of the given speed. In addition, the improved Luenberger mechanical torque observer is designed in the speed outer ring to deal with the vibration caused by unstable wind speed. Finally, compared with the dual-closed-loop Proportional Integral (PI) control, the experimental results show that the demagnetization fault-tolerant control strategy has smaller speed overshoot and smaller speed fluctuation when the mechanical torque changes. The method can maintain the speed balance when the PM demagnetization faults occur and have stronger fault tolerance and anti-interference ability.
Citation
Bing Luo, Sicheng Peng, Yang Zhang, Zihao Liu, and Bo Huang, "A Fault-Tolerant Control Strategy for d -PMSG Wind Power Generation System," Progress In Electromagnetics Research C, Vol. 123, 75-89, 2022.
doi:10.2528/PIERC22062301
References

1. Pang, S., X. Zheng, H. Li, Y. Liu, and Y. Feng, "Passivity full-order sliding mode control for DFIG wind turbine system," IECON 2017 --- 43rd Annual Conference of the IEEE Industrial Electronics Society, 8236-8240, 2017, doi: 10.1109/IECON.2017.8217445.
doi:10.1109/IECON.2017.8217445

2. Hou, L., X. Zheng, C. Wang, Y. Li, and H. Li, "Based on PCHD and HPSO sliding mode control of D-PMSG wind power system," 2018 International Power Electronics Conference (IPEC-Niigata 2018 --- ECCE Asia), 2901-2906, 2018, doi: 10.23919/IPEC.2018.8507616.
doi:10.23919/IPEC.2018.8507616

3. Imad, A., S. El Hani, A. Echchaachouai, and A. A. Energy, "Robust active disturbance rejection control of a direct driven PMSG wind turbine," 2017 International Renewable and Sustainable Energy Conference (IRSEC), 1-6, 2017, doi: 10.1109/IRSEC.2017.8477283.

4. He, S. and M. Wang, "Grey prediction pi control of direct drive permanent magnet synchronous wind turbine," 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), 2032-2035, 2020, doi: 10.1109/EI250167.2020.9346881.
doi:10.1109/EI250167.2020.9346881

5. Barmpatza, A. C. and J. C. Kappatou, "Study of a combined demagnetization and eccentricity fault in an AFPM synchronous generator," Energies, 2020.

6. Ismagilov, F. R., V. Vavilov, D. Gusakov, A. Kh. Miniyarov, and V. V. Ayguzina, "Diagnostic method of rotor cracks and local demagnetization by using the measuring coils for the permanent magnet synchronous machines," Progress In Electromagnetics Research C, Vol. 86, 123-136, 2018.
doi:10.2528/PIERC18070205

7. Mohammed, E., G. Kobet, and A. Eltom, "Investigation of a new method for synchronous generator loss of excitation protection," 2019 IEEE Power & Energy Society General Meeting (PESGM), 1-5, IEEE, 2019.

8. Lu, W., H. Zhao, and S. Liu, "Demagnetization conditions comparison for line-start permanent magnet synchronous motors," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 48-52, 2014, doi: 10.1109/ICEMS.2014.7013449.
doi:10.1109/ICEMS.2014.7013449

9. Kim, D.-H., K. S. Kim, I.-J. Yang, J. Lee, and W.-H. Kim, "Alternative bridge spoke permanent magnet synchronous generator design for wind power generation systems," IEEE Access, Vol. 9, 152819-152828, 2021, doi: 10.1109/ACCESS.2021.3127556.
doi:10.1109/ACCESS.2021.3127556

10. Mínaz, M. R. and E. Akcan, "An effective method for detection of demagnetization fault in axial flux coreless PMSG with texture-based analysis," IEEE Access, Vol. 9, 17438-17449, 2021, doi: 10.1109/ACCESS.2021.3050418.
doi:10.1109/ACCESS.2021.3050418

11. Huan, J. and H. Zhu, "Design of the outer-rotor coreless bearingless permanent magnet synchronous generator based on an improved MOPSO algorithm," Progress In Electromagnetics Research M, Vol. 110, 11-24, 2022.
doi:10.2528/PIERM22022202

12. Zhu, H., K. Zhou, and J. Huan, "Compensation rotor vibration of outer rotor coreless bearingless permanent magnet synchronous generator using variable step least mean square adaptive filter," Progress In Electromagnetics Research M, Vol. 106, 191-203, 2021.
doi:10.2528/PIERM21100504

13. Zhou, B., G. Tang, and Y. Luo, "Dynamic modeling and analysis of demagnetizing rotor of permanent magnet synchronous motor," Shock and Vibration, 2021.

14. Song, X., J. Zhao, J. Song, et al. "Local demagnetization fault recognition of permanent magnet synchronous linear motor based on S-transform and PSO-LSSVM," IEEE Transactions on Power Electronics, Vol. 35, No. 8, 7816-7825, 2020.
doi:10.1109/TPEL.2020.2967053

15. Barmpatza, A. C. and J. C. Kappatou, "Study of the total demagnetization fault of an AFPM wind generator," IEEE Transactions on Energy Conversion, 2020.

16. Huang, G., J. Li, E. F. Fukushima, et al. "An improved equivalent-input-disturbance approach for PMSM drive with demagnetization fault," ISA Transactions, 2020.

17. Zhao, K., R. Zhou, J. T. She, et al. "Demagnetization-fault reconstruction and tolerant-control for PMSM using improved SMO-based equivalent-input-disturbance approach," IEEE/ASME Transactions on Mechatronics, 2021.

18. Lin, L., X. Zhang, W. Guo, et al. "Analysis on loss-of-excitation process and research on protection method of synchronous generators," High Voltage Engineering, Vol. 40, No. 11, 3544-3553, 2014.

19. Zhang, Z., H. Zhang, T. Yue, et al. "Diagnosis of PMSG demagnetization degree based on fuzzy neural network," Micromotors, Vol. 52, No. 11, 27-30, 2019, doi: 10.15934/j.cnki.micromotors.2019.11.006.

20. Imad, A., S. El Hani, A. Echchaachouai, and A. A. Energy, "Robust active disturbance rejection control of a direct driven PMSG wind turbine," 2017 International Renewable and Sustainable Energy Conference (IRSEC), 1-6, 2017, doi: 10.1109/IRSEC.2017.8477283.

21. Cui, S., B. Du, and S. Han, "A diagnosis for demagnetization of permanent magnetic synchronous motor based on second order generalized integrator," 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), 1-5, 2015, doi: 10.1109/VPPC.2015.7352874.

22. Quintal-Palomo, R. E., M. Flota-Bañuelos, A. Bassam, R. Peόn-Escalante, F. Peñuñuri, and M. Dybkowski, "Post-fault demagnetization of a PMSG under field oriented control operation," IEEE Access, Vol. 9, 53838-53848, 2021, doi: 10.1109/ACCESS.2021.3070531.
doi:10.1109/ACCESS.2021.3070531

23. Usman, A., V. K. Sharma, and B. S. Rajpurohit, "Harmonic analysis of a BLDC motor under demagnetization fault conditions," 2020 IEEE 9th Power India International Conference (PIICON), IEEE, 2020.

24. Verkroost, L., J. De Bisschop, H. Vansompel, F. De Belie, and P. Sergeant, "Active demagnetization fault compensation for axial flux permanent-magnet synchronous machines using an analytical inverse model," IEEE Transactions on Energy Conversion, Vol. 35, No. 2, 591-599, Jun. 2020, doi: 10.1109/TEC.2019.2958071.
doi:10.1109/TEC.2019.2958071