1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., Vol. 49, No. 6, 101-107, Jun. 2011.
doi:10.1109/MCOM.2011.5783993
2. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
doi:10.1109/ACCESS.2013.2260813
3. Roh, W., et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, Feb. 2014.
doi:10.1109/MCOM.2014.6736750
4. Yang, B., Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, "Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 7, 3403-3418, Jul. 2018.
doi:10.1109/TMTT.2018.2829702
5. Campo, M. A., G. Carluccio, D. Blanco, O. Litschke, S. Bruni, and N. Llombart, "Wideband circularly polarized antenna with in-lens polarizer for high-speed communications," IEEE Trans. Antennas Propag., Vol. 69, No. 1, 43-54, Jan. 2021, doi: 10.1109/TAP.2020.3008638.
doi:10.1109/TAP.2020.3008638
6. Hong, W., et al. "Multibeam antenna technologies for 5G wireless communications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6231-6249, Dec. 2017.
doi:10.1109/TAP.2017.2712819
7. Wang, C., J. Wu, and Y. Guo, "A 3-D-printed multibeam dual circularly polarized luneburg lens antenna based on quasi-icosahedron models for Ka-band wireless applications," IEEE Trans. Antennas Propag., Vol. 68, No. 8, 5807-5815, Aug. 2020.
doi:10.1109/TAP.2020.2983798
8. Wu, X., G. V. Eleftheriades, and T. E. van Deventer-Perkins, "Design and characterization of single- and multiple-beam mm-Wave circularly polarized substrate lens antennas for wireless communications," IEEE Trans. Microw. Theory Techn., Vol. 49, No. 3, 431-441, 2001.
doi:10.1109/22.910546
9. Fernandes, C. A., "Shaped-beam antennas," Handbook of Antennas in Wireless Communications, L. Godara, Ed., Ch. 15, CRC Press, New York, 2002.
10. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, Apr. 2005.
doi:10.1109/TAP.2005.844420
11. Costa, J. R., C. A. Fernandes, G. Godi, R. Sauleau, L. Le Coq, and H. Legay, "Compact Ka-band lens antennas for LEO satellites," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1251-1258, May 2008.
doi:10.1109/TAP.2008.922690
12. Neto, A., "UWB, non-dispersive radiation from the planarly fed leaky lens antenna --- Part 1: Theory and design," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2238-2247, Jul. 2010.
doi:10.1109/TAP.2010.2048879
13. Nguyen, N. T., N. Delhote, M. Ettorre, D. Baillargeat, L. Le Coq, and R. Sauleau, "Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2757-2762, Aug. 2010.
doi:10.1109/TAP.2010.2050447
14. Nguyen, N. T., R. Sauleau, and L. Le Coq, "Reduced-size double-shell lens antenna with flat-top radiation pattern for indoor communications at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2424-2429, Jun. 2011.
doi:10.1109/TAP.2011.2144554
15. Filipovic, D. F., S. S. Gearhart, and G. M. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Trans. Microw. Theory Techn., Vol. 41, No. 10, 1738-1749, Oct. 1993.
doi:10.1109/22.247919
16. Van Rudd, J. and D. M. Mittleman, "Influence of substrate-lens design in terahertz time-domain spectroscopy," J. Opt. Soc. Am. A, Vol. 19, No. 2, 319-328, 2002.
doi:10.1364/JOSAB.19.000319
17. Fernandes, C., E. B. Lima, and J. R. Costa, "Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3805-3813, 2010.
doi:10.1109/TAP.2010.2078463
18. Raman, S., N. S. Barker, and G. M. Rebeiz, "A W-band dielectric lens based integrated monopulse radar receiver," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2308-2316, 1998.
doi:10.1109/22.739216
19. Nguyen, N. T., R. Sauleau, M. Ettorre, and L. Le Coq, "Focal array fed dielectric lenses: An attractive solution for beam reconfiguration at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2152-2159, 2011.
doi:10.1109/TAP.2011.2144550
20. Nguyen, N. T., A. V. Boriskin, L. Le Coq, and R. Sauleau, "Improvement of the scanning performance of the extended hemispherical integrated lens antenna using a double lens focusing system," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3698-3702, Aug. 2016, doi: 10.1109/TAP.2016.2572227.
doi:10.1109/TAP.2016.2572227
21. Yoneda, N., R. Miyazaki, I. Matsumura, and M. Yamato, "A design of novel grooved circular waveguide polarizers," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 12, 2446-2452, Dec. 2000.
doi:10.1109/22.898996
22. Wang, S.-W., C.-H. Chien, C.-L. Wang, and R.-B. Wu, "A circular polarizer designed with a dielectric septum loading," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 7, 1719-172, Jul. 2004.
doi:10.1109/TMTT.2004.830487
23. Letizia, M., B. Fuchs, A. Skrivervik, and J. R. Mosig, "Circularly polarized homogeneous lens antenna system providing multibeam radiation pattern for HAPS," Radio Sci. Bull., Vol. 332, 18-28, Mar. 2010.
24. Cai, Y., Y. Zhang, Z. Qian, W. Cao, and S. Shi, "Compact wideband dual circularly polarized substrate integrated waveguide horn antenna," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3184-3189, Jul. 2016.
doi:10.1109/TAP.2016.2554627
25. Farooqui, M. F. and A. Shamim, "3-D inkjet-printed helical antenna with integrated lens," IEEE Antennas Wireless Propag. Lett., Vol. 16, No. 8, 800-803, Aug. 2016.
26. Sammeta, R. and D. S. Filipovic, "Improved efficiency lens-loaded cavity-backed transmit sinuous antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6000-6009, Dec. 2014.
doi:10.1109/TAP.2014.2365232
27. Xue, L. and V. Fusco, "Polarisation insensitive planar dielectric slab waveguide extended hemi-elliptical lens," IET Microw., Antennas Propag., Vol. 2, No. 4, 312-315, Jun. 2008.
doi:10.1049/iet-map:20070194
28. Shi, Z., S. Yang, S.-W. Qu, and Y. Chen, "Circularly polarised planar Luneberg lens antenna for mm-Wave wireless communication," Electron. Lett., Vol. 52, No. 15, 1281-1282, 2016.
doi:10.1049/el.2016.1524
29. Wang, K. X. and H. Wong, "Design of a wideband circularly polarized millimeter-wave antenna with an extended hemispherical lens," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4303-4308, Aug. 2018.
doi:10.1109/TAP.2018.2841414
30. Ozpinar, H., S. Aksimsek, and N. T. Tokan, "A novel compact, broadband, high gain millimeter-wave antenna for 5G beam steering applications," IEEE Trans. on Vehicular Techn., Vol. 69, No. 3, 2389-2397, Mar. 2020.
doi:10.1109/TVT.2020.2966009
31. Sönmez, N., F. Tokan, and N. Tokan, "Double lens antennas in millimeter-wave automotive radar sensors," Applied Comp. Electromag. Soc. Journal, Vol. 32, 901-907, 2017.
32. Pan, Y. M. and K. W. Leung, "Wideband circularly polarized dielectric bird-nest antenna with conical radiation pattern," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 563-570, Feb. 2013.
doi:10.1109/TAP.2012.2220101
33. Born, M. and E. Wolf, Principles of Optics, 705-708, Pergamon, London, U.K., 1980.
34. Wang, K. X. and H. Wong, "A wideband millimeter-wave circularly polarized antenna with 3-D printed polarizer," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1038-1046, Mar. 2017.
doi:10.1109/TAP.2016.2647693
35. Alcep, M. and F. Tokan, "Impedance matching technique with perforated, inhomogeneous layers for broadband dielectric lenses," IEEE Sensors Journal, Vol. 21, No. 18, 20018-20026, Sept. 2021.
doi:10.1109/JSEN.2021.3100640