Vol. 122
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-08-12
Design of High-Selectivity Compact Quad-Band BPF Using Multi-Coupled Line and Short Stub-SIR Resonators
By
Progress In Electromagnetics Research C, Vol. 122, 215-228, 2022
Abstract
This study presents a quad-band bandpass filter with high selectivity, compact size, and highly independent bands using a folded C-shape resonator, short stub-SIR resonator, and two folded L-shape resonators. The suggested structure consists of two separate filters. The upper filter is made up of a short stub-SIR resonator loaded on a C-shape resonator resonating at 2.59 GHz and 3.5 GHz, respectively. The lower filter is made up of two folded L-shape resonators resonating at 4.89 GHz and 6.15 GHz, respectively. The frequencies at which the filter resonates are designed and arranged with high independence. The proposed filter achieves insertion loss of -2.7 dB, -0.7 dB, 2.3 dB, and -0.4 dB, and return loss of -13.32 dB, -11.03 dB, -9.17 dB, and -17.89 dB, respectively. In addition, eight transmission zeros appeared. The proposed design has a compact size of 0.19λg×0.15λg and is built on an RO4350B substrate with a dielectric constant of 3.66, loss tangent of 0.0037, and thickness of 0.508 mm. Finally, the suggested filter is intended to be used in 5G mobile communications and international mobile telecommunications services.
Citation
Halah I. Khani, Ahmed S. Ezzulddin, and Hussam Al-Saedi, "Design of High-Selectivity Compact Quad-Band BPF Using Multi-Coupled Line and Short Stub-SIR Resonators," Progress In Electromagnetics Research C, Vol. 122, 215-228, 2022.
doi:10.2528/PIERC22052903
References

1. 5G PPP "5G PPP architecture working group view on 5G architecture view on 5G architecture version 1.0, July 2016 5G PPP architecture working group view on 5G architecture,", July 2016.
doi:10.1109/4.735702

2. Wu, S. and B. Razavi, "A 900-MHz/1.8-GHz CMOS receiver for dual-band applications," IEEE J. Solid-State Circuits, Vol. 33, No. 12, 2178-2185, 1998.

3. Shi, L. and J. Gao, "Multitransmission zero dual-band bandpass filter using nonresonating node for 5G millimetre-wave application," Act. Passiv. Electron. Components, Vol. 2018, Article ID 7628598, 2018.
doi:10.1109/TMTT.2013.2273759

4. Xu, J., W. Wu, and C. Miao, "Compact microstrip dual-/tri-/quad-band bandpass filter using open stubs loaded shorted stepped-impedance resonator," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 9, 3187-3199, 2013, doi: 10.1109/TMTT.2013.2273759.
doi:10.1109/ACCESS.2019.2944681

5. Cai, Q., Y. Li, X. Zhang, and W. Shen, "Wideband MIMO antenna array covering 3.3-7.1 GHz for 5G metal-rimmed smartphone applications," IEEE Access, Vol. 7, 142070-142084, 2019, doi: 10.1109/ACCESS.2019.2944681.
doi:10.1002/9781119236306

6. Holma, H. and A. Toskala, 5G Technology: 3GPP New Radio, 2020.
doi:10.1017/S1759078719000357

7. Zhou, J., L. Wang, Z. Wang, S. Zhang, and M. He, "A compact quad-band bandpass filter with mixed electric and magnetic coupling," Int. J. Microw. Wirel. Technol., Vol. 11, No. 5-6, 517-522, 2019, doi: 10.1017/S1759078719000357.
doi:10.1049/el.2016.4333

8. Liu, B., et al. "Quad-band BPF based on SLRs with inductive source and load coupling," Electron. Lett., Vol. 53, No. 8, 540-542, 2017.
doi:10.1109/LMWC.2015.2463227

9. Zhang, Y., L. Gao, and X. Y. Zhang, "Compact quad-band bandpass filter for DCS/WLAN/WiMAX/5G Wi-Fi application," IEEE Microw. Wirel. Components Lett., Vol. 25, No. 10, 645-647, 2015.
doi:10.1049/el.2014.3347

10. Wu, B., F. Qiu, and L. Lin, "Quad-band filter with high skirt selectivity using stub-loaded nested dual-open loop resonators," Electron. Lett., Vol. 51, No. 2, 166-168, 2015.
doi:10.1109/LMWC.2015.2440655

11. Yan, T., X.-H. Tang, and J. Wang, "A novel quad-band bandpass filter using short stub loaded E-shaped resonators," IEEE Microw. Wirel. Components Lett., Vol. 25, No. 8, 508-510, 2015.
doi:10.1109/LMWC.2016.2615082

12. Wu, H.-W. and C.-T. Chiu, "Design of compact multi-layered quad-band bandpass filter," IEEE Microw. Wirel. Components Lett., Vol. 26, No. 11, 879-881, 2016.
doi:10.1002/mop.28160

13. Wei, F., Q. L. Huang, W. Li, and X. Shi, "A compact quad-band bandpass filter using novel stub-loaded SIR structure," Microw. Opt. Technol. Lett., Vol. 56, No. 3, 538-542, 2014.
doi:10.1002/9781119292371

14. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, John Wiley & Sons, 2018.
doi:10.1049/el.2017.4429

15. Wang, J., S. He, and D. Gan, "A 2.4/3.5/5.2/5.8-GHz quad-band BPF using SLRs and triangular loop resonators," Electron. Lett., Vol. 54, No. 5, 299-301, 2018.
doi:10.1002/mop.32016

16. Sung, Y., "Simple quad-band bandpass filter implemented on a 50-Ω microstrip line," Microw. Opt. Technol. Lett., Vol. 62, No. 1, 100-107, 2020, doi: 10.1002/mop.32016.

17. Xie, H., K. Zhou, C. Zhou, and W. Wu, "Analysis of four-stage stepped-impedance resonators and their application to quad-band microstrip bandpass filter," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 4, e22116, 2020.
doi:10.1049/iet-map.2019.0563

18. Chen, C.-F., J.-J. Li, K.-W. Zhou, R.-Y. Chen, Z.-C. Wang, and Y.-H. He, "Design of a microstrip quad-band bandpass filter with controllable bandwidth and band spacing for multifunctional applications," IET Microwaves, Antennas & Propagation, 374-380, 2020, doi: 10.1049/iet-map.2019.0563.
doi:10.1515/freq-2019-0043

19. Cao, Q., H. Liu, and L. Gao, "Design of novel compact quad-band bandpass filter with high selectivity," Frequenz, Vol. 74, No. 1-2, 53-59, 2020, doi: 10.1515/freq-2019-0043.
doi:10.1515/freq-2019-0159

20. Basit, A. and M. I. Khattak, "Designing modern compact microstrip planar quadband bandpass filter for hand held wireless applications," Frequenz, Vol. 74, No. 5-6, 219-227, 2020.
doi:10.1109/ICPECA51329.2021.9362506

21. Wang, X., L. Wang, W. Yang, and Y. Zhang, "Design of quad-band filter using SIR and DGS," 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), 378-381, 2021.