Vol. 121
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-07-19
Optimal Duty Cycle Model Predictive Current Control Based on Internal Model Observer for PMSM
By
Progress In Electromagnetics Research C, Vol. 121, 179-195, 2022
Abstract
This paper presents an optimal duty cycle model predictive current control (ODC-MPCC) strategy based on the internal model observer (IMO) for permanent magnet synchronous motor (PMSM). First, in order to be able to control the current quickly and better, the partial derivative of the cost function with respect to the optimal duty cycle is directly used. On this basis, a five-segment algorithm is used to allocate the optimal duty cycle, and output voltage with arbitrary amplitude and direction. In addition, to reduce the current static error under parameter mismatch, the IMO is designed to estimate the system disturbance caused by parameters variation, which is used for feedforward compensation. Finally, experiments show that the proposed method can effectively reduce the current ripple and static error and improve the steady-state performance of the system.
Citation
Dingdou Wen, Yanqin Zhang, and Yang Zhang, "Optimal Duty Cycle Model Predictive Current Control Based on Internal Model Observer for PMSM," Progress In Electromagnetics Research C, Vol. 121, 179-195, 2022.
doi:10.2528/PIERC22042901
References

1. Sun, X., Z. Shi, Y. Cai, G. Lei, Y. Guo, and J. Zhu, "Driving-cycle-oriented design optimization of a permanent magnet hub motor drive system for a four-wheel-drive electric vehicle," IEEE Transactions on Transportation Electrification, Vol. 6, No. 3, 1115-1125, Sept. 2020, doi: 10.1109/TTE.2020.3009396.
doi:10.1109/TTE.2020.3009396

2. Quang, N. H., N. P. Quang, D. P. Nam, et al. "Multi parametric model predictive control based on Laguerre model for permanent magnet linear synchronous motors," International Journal of Electrical and Computer Engineering (IJECE), Vol. 9, No. 2, 1067-1077, 2019.
doi:10.11591/ijece.v9i2.pp1067-1077

3. Zhu, Z., Y. Tian, X. Wang, L. Li, X. Luan, and Y. Gao, "Fusion predictive control based on uncertain algorithm for PMSM of brake-by-wire system," IEEE Transactions on Transportation Electrification, Vol. 7, No. 4, 2645-2657, Dec. 2021, doi: 10.1109/TTE.2021.3065249.
doi:10.1109/TTE.2021.3065249

4. Zhang, Y., J. Jin, and L. Huang, "Model-free predictive current control of PMSM drives based on extended state observer using ultralocal model," IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, 993-1003, Feb. 2021, doi: 10.1109/TIE.2020.2970660.
doi:10.1109/TIE.2020.2970660

5. Wendel, S., A. Dietz, and R. Kennel, "PGA based finite-set model predictive current control for small PMSM drives with efficient resource streaming," 2017 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 66-71, 2017, doi: 10.1109/PRECEDE.2017.8071270.
doi:10.1109/PRECEDE.2017.8071270

6. Petkar, S. G., K. Eshwar, and V. K. Thippiripati, "A modified model predictive current control of permanent magnet synchronous motor drive," IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, 1025-1034, Feb. 2021, doi: 10.1109/TIE.2020.2970671.
doi:10.1109/TIE.2020.2970671

7. Xu, Y., B. Zhang, and Q. Zhou, "Predictive current control of permanent magnet synchronous motor with dual vector model," Journal of Electrotechnical Technology, Vol. 32, No. 20, 222-230, Chinese Journals, 2017.

8. Lin, H. and W. Song, "Three-vector model predictive current control of permanent magnet synchronous motor based on SVM," 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 1-6, 2019, doi: 10.1109/PRECEDE.2019.8753364.

9. Lin, C., T. Liu, J. Yu, L. Fu, and C. Hsiao, "Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique," IEEE Transactions on Industrial Electronics, Vol. 61, No. 2, 667-681, Feb. 2014, doi: 10.1109/TIE.2013.2253065.
doi:10.1109/TIE.2013.2253065

10. Shao, M., Y. Deng, H. Li, J. Liu, and Q. Fei, "Robust speed control for permanent magnet synchronous motors using a generalized predictive controller with a high-order terminal sliding-mode observer," IEEE Access, Vol. 7, 121540-121551, 2019, doi: 10.1109/ACCESS.2019.2937535.
doi:10.1109/ACCESS.2019.2937535

11. Romero, J. G., R. Ortega, Z. Han, et al. "An adaptive flux observer for the permanent magnet synchronous motor," International Journal of Adaptive Control and Signal Processing, Vol. 30, No. 3, 473-487, 2016.
doi:10.1002/acs.2587

12. Shi, T., Y. Yan, Z. Zhou, M. Xiao, and C. Xia, "Linear quadratic regulator control for PMSM drive systems using nonlinear disturbance observer," IEEE Transactions on Power Electronics, Vol. 35, No. 5, 5093-5101, May 2020, doi: 10.1109/TPEL.2019.2947259.
doi:10.1109/TPEL.2019.2947259

13. Li, G., W. Xu, J. Zhao, et al. "Precise robust adaptive dynamic surface control of permanent magnet synchronous motor based on extended state observer," IET Science, Measurement & Technology, Vol. 11, No. 3, 590-599, May 2017.
doi:10.1049/iet-smt.2016.0252

14. He, L., F. Wang, J. Wang, and J. Rodríguez, "Zynq implemented luenberger disturbance observer based predictive control scheme for PMSM drives," IEEE Transactions on Power Electronics, Vol. 35, No. 2, 1770-1778, Feb. 2020, doi: 10.1109/TPEL.2019.2920439.
doi:10.1109/TPEL.2019.2920439

15. Gabbi, T. S., H. Abilio Grundling, and R. Padilha Vieira, "Sliding mode current control based on disturbance observer applied to permanent magnet synchronous motor," 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), 1-6, 2015, doi: 10.1109/COBEP.2015.7420038.

16. Shen, Y., Q. Xu, Y. Ma, and Y. Zou, "Application of an improved ADRC controller based on the double closed loop dynamic disturbance compensation in PMSM," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 435-440, 2018, doi: 10.23919/ICEMS.2018.8549467.
doi:10.23919/ICEMS.2018.8549467

17. Niu, S., Y. Luo, W. Fu, and X. Zhang, "Robust model predictive control for a three-phase PMSM motor with improved control precision," IEEE Transactions on Industrial Electronics, Vol. 68, No. 1, 838-849, Jan. 2021, doi: 10.1109/TIE.2020.3013753.
doi:10.1109/TIE.2020.3013753

18. Niu, F., W. Xiao, H. Shao, et al. "Current prediction error reduction method of predictive current control for permanent magnet synchronous motors," IEEE Access, Vol. 8, 124288-124296, 2020.
doi:10.1109/ACCESS.2020.3006132

19. Wang, G., M. Yang, L. Niu, et al. "Current static error elimination algorithm for current predictive control of permanent magnet synchronous motor," Chinese Journal of Electrical Engineering, Vol. 35, No. 10, 2544-2551, Chinese Journals, 2015.

20. Liu, G., L. Chen, W. Zhao, Y. Jiang, and L. Qu, "Internal model control of permanent magnet synchronous motor using support vector machine generalized inverse," IEEE Transactions on Industrial Informatics, Vol. 9, No. 2, 890-898, May 2013, doi: 10.1109/TII.2012.2222652.
doi:10.1109/TII.2012.2222652

21. Zhang, R., Z. Yin, N. Du, J. Liu, and X. Tong, "Robust adaptive current control of a 1.2-MW direct-drive PMSM for traction drives based on internal model control with disturbance observer," IEEE Transactions on Transportation Electrification, Vol. 7, No. 3, 1466-1481, Sept. 2021, doi: 10.1109/TTE.2021.3058012.
doi:10.1109/TTE.2021.3058012

22. Li, S. and H. Gu, "Fuzzy adaptive internal model control schemes for PMSM speed-regulation system," IEEE Transactions on Industrial Informatics, Vol. 8, No. 4, 767-779, Nov. 2012, doi: 10.1109/TII.2012.2205581.
doi:10.1109/TII.2012.2205581

23. Chen, M., F. Wang, L. He, D. Ke, K. Zuo, and J. Rodriguez, "Predictive current control of permanent magnet synchronous motor based on an adaptive internal model observer," 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2567-2571, 2020, doi: 10.1109/IPEMC-ECCEAsia48364.2020.9368203.
doi:10.1109/IPEMC-ECCEAsia48364.2020.9368203

24. Yan, L., M. Dou, Z. Hua, H. Zhang, and J. Yang, "Optimal duty cycle model predictive current control of high-altitude ventilator induction motor with extended minimum stator current operation," IEEE Transactions on Power Electrnics,, Vol. 33, No. 8, 7240-7251, Aug. 2018, doi: 10.1109/TPEL.2017.2759906.
doi:10.1109/TPEL.2017.2759906

25. Zhou, Z., C. Xia, Y. Yan, Z. Wang, and T. Shi, "TorquE RIPPLE MINIMIZATION OF PREDICTIVE TORQUE CONTROL FOR PMSM with extended control set," IEEE Transactions on Industrial Electronics, No. 64, 6930-6939, Sept. 2017, doi: 10.1109/TIE.2017.2686320.
doi:10.1109/TIE.2017.2686320

26. Liu, X., L. Zhou, J. Wang, X. Gao, Z. Li, and Z. Zhang, "Robust predictive current control of permanent-magnet synchronous motors with newly designed cost function," IEEE Transactions on Power Electronics, Vol. 35, No. 10, 10778-10788, Oct. 2020, doi: 10.1109/TPEL.2020.2980930.
doi:10.1109/TPEL.2020.2980930