Vol. 123
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-08
A Wideband Polarization Conversion Coding Metasurface for Monostatic Radar Cross Section Reduction of High Altitude Aerospace Platforms
By
Progress In Electromagnetics Research C, Vol. 123, 263-279, 2022
Abstract
A novel wideband cross-polarized coding metasurface has been presented in this paper towards reduction of monostatic radar cross section (RCS). A broadband reflective cross-polarization converter for linearly polarized (LP) electromagnetic waves covering both X and Ku bands has been designed for this purpose. The proposed unit cell is ultrathin (λ/15.7) and demonstrates a polarization conversion bandwidth of 10.84 GHz from 7.96 GHz to 18.8 GHz for a linearly polarized normal incidence wave which helps in reduction of radar cross section. In order to have a better understanding of cross polarization conversion (CPC), the physical mechanism of the structure has been investigated and elucidated in detail, along with the surface current distribution. The proposed structure has been studied for both transverse electric (TE) and transverse magnetic (TM) polarizations. For 1 bit coding, the suggested unit cell is utilized as the `0' bit, while the 90˚ rotated version of the unit cell is used as the `1' bit. A 4 × 4 matrix is built, and 16 configurations are explored. These combinations are known as the 2 × 2 metasurface sub-blocks, and they are used to build 200 × 200 components with size of 180 mm × 180 mm. The RCS simulation studies have been carried out from 2 to 30 GHz, and the proposed design shows a 10 dB RCS reduction from 10 GHz to 20 GHz. The scattering pattern of the suggested metasurface is comprehensively analyzed at 10 GHz, 15 GHz, and 18 GHz and demonstrates diffuse scattering in the other direction, minimizing the forward scattering RCS. The designed structure of 2.4 mm thickness has been fabricated and measured in the X and Ku bands. The measured results are in good agreement with simulated ones. In order to show the efficiency of the proposed coding metasurface, monostatic RCS estimation of the wing and body sections of high altitude aerospace paltforms (HAPS) has been simulated, and a 14.32 dB reduction has been observed over the body cross section.
Citation
E. V. Bhavya, Balamati Choudhury, and Raveendranath Nair, "A Wideband Polarization Conversion Coding Metasurface for Monostatic Radar Cross Section Reduction of High Altitude Aerospace Platforms," Progress In Electromagnetics Research C, Vol. 123, 263-279, 2022.
doi:10.2528/PIERC22042704
References

1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

2. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nature Materials, Vol. 11, No. 5, 426-431, 2012.
doi:10.1038/nmat3292

3. Della Giovampaola, C. and N. Engheta, "Digital metamaterials," Nature Materials, Vol. 13, No. 12, 1115-1121, 2014.
doi:10.1038/nmat4082

4. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218-e218, 2014.
doi:10.1038/lsa.2014.99

5. Chen, H., H. Ma, J. Wang, S. Qu, Y. Li, J. Wang, M. Yan, and Y. Pang, "A wideband deflected reflection based on multiple resonances," Applied Physics A, Vol. 120, No. 1, 287-291, 2015.
doi:10.1007/s00339-015-9186-0

6. Zhang, X. and Y. Wu, "Effective medium theory for anisotropic metamaterials," Scientific Reports, Vol. 5, No. 1, 1-7, 2015.
doi:10.9734/JSRR/2015/14076

7. Li, Y. F., J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, "Wide-band circular polarization-keeping reflection mediated by metasurface," Chinese Physics B, Vol. 24, No. 1, 014202, 2015.
doi:10.1088/1674-1056/24/1/014202

8. Li, Y., J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, "Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces," Applied Physics Letters, Vol. 104, No. 22, 221110, 2014.
doi:10.1063/1.4881935

9. Dai, H., Y. Zhao, H. Li, J. Chen, Z. He, and W. Qi, "An ultra-wide band polarization-independent random coding Metasurface for RCS reduction," Electronics, Vol. 8, No. 10, 1104, 2019.
doi:10.3390/electronics8101104

10. Ali, L., Q. Li, T. Ali Khan, J. Yi, and X. Chen, "Wideband RCS reduction using coding diffusion metasurface," Materials, Vol. 12, No. 17, 2708, 2019.
doi:10.3390/ma12172708

11. Chen, K., L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, "Coding metasurface for broadband microwave scattering reduction with optical transparency," Optics Express, Vol. 25, No. 5, 5571-5579, 2017.
doi:10.1364/OE.25.005571

12. Ameri, E., S. H. Esmaeli, and S. H. Sedighy, "Ultra wideband radar cross section reduction by using polarization conversion metasurfaces," Scientific Reports, Vol. 9, No. 1, 1-8, 2019.
doi:10.1038/s41598-018-36542-6

13. Lin, B. Q., X. Y. Da, J. L. Wu, W. Li, Y. W. Fang, and Z. H. Zhu, "Ultra-wideband and high-efficiency cross polarization converter based on anisotropic metasurface," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2402-2405, 2016.
doi:10.1002/mop.30056

14. Fang, C., Y. Cheng, Z. He, J. Zhao, and R. Gong, "Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface," Optik, Vol. 137, 148-155, 2017.
doi:10.1016/j.ijleo.2017.03.002

15. Mei, Z. L., X. M. Ma, C. Lu, and Y. D. Zhao, "High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface," Aip Advances, Vol. 7, No. 12, 125323, 2017.
doi:10.1063/1.5003446

16. Zhao, J. C. and Y. Z. Cheng, "Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Optik, Vol. 136, 52-57, 2017.
doi:10.1016/j.ijleo.2017.02.006

17. Zhang, L., P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, "Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator," Optical Materials Express, Vol. 6, No. 4, 1393-1404, 2016.
doi:10.1364/OME.6.001393

18. Zhang, L., P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, "Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies," Applied Physics B, Vol. 120, No. 4, 617-622, 2015.
doi:10.1007/s00340-015-6173-2

19. Tiwari, P., S. K. Pathak, , V. P. A. V. Siju, and A. Sinha, "X-band Γ-shaped anisotropic metasurface-based perfect cross-polarizer for RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 7, 894-906, 2020.
doi:10.1080/09205071.2020.1759462

20. Han, T., K. Wen, Z. Xie, and X. Yue, "An ultra-thin wideband reflection reduction metasurface based on polarization conversion," Progress In Electromagnetic Research, Vol. 173, 1-8, 2022.
doi:10.2528/PIER21121405

21. Ahmad, T., A. A. Rahim, R. M. H. Bilal, A. Noor, H. Maab, M. A. Naveed, et al. "Ultrawideband cross-polarization converter using anisotropic reflective metasurface," Electronics, Vol. 11, No. 3, 487, 2022.
doi:10.3390/electronics11030487