Vol. 120
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-06-07
Optimal Design of a Circularly Polarized Antenna for LTE Bands 42/43 Applications
By
Progress In Electromagnetics Research C, Vol. 120, 223-241, 2022
Abstract
In this paper, an optimized circularly polarized (CP) antenna is proposed for operating in the LTE bands 42/43 applications. This CP antenna comprises three sections, the meander-line and L-shaped strip structures modeled on the front side of a Roger 3003 substrate, and on the back side a rotated H-shaped ground plane is printed. In order to further increase the antenna common bandwidth (CBW), that is the voltage standing wave ratio bandwidth (VRBW) and axial ratio bandwidth (ARBW), an offset-fed line on the front side and a shorting pinare used. A feasible solution of the optimized CP antenna with compact size is achieved by applying an optimization design methodology with a fitness function that takes into account the antenna performance parameters, CBW or both the VRBW and ARBW in addition to the realized gain (RG). Two programs are operating in synchronous fashion for finding the optimal geometric antenna parameters, a particle swarm optimization (PSO) for implementing the fitness function in MATLAB and a CST MWS simulator tool for extracting the antenna performance parameters. The optimized antennas without and with shorting pin are obtained with a broadest CBW and feature of CP operation and an acceptable RG across the desired LTE 42 (3.4-3.6 GHz) and LTE 42/43 (3.4-3.8 GHz) band, respectively. The proposed two designed antennas, with and without shorting pin, are fabricated, and the measured results are in good agreement with the simulated ones. From measured results, a -10 dB-S11 impedance bandwidth (IBW) of 220 MHz (3.38-3.60 GHz) and 460 MHz (3.37-3.83 GHz), a 3-dB ARBW of 200 MHz (3.4-3.6 GHz) and 390 MHz (3.42-3.81 GHz) with respective maximum RG of 2.26 and 2.39 dBic are exhibited by the antennas without and with pin, respectively. The obtained 3-dB ARBWs and -10-dB IBWs make the proposed antennas entirely cover the LTE 42 or LTE 42/43 frequency bands.
Citation
Saja Alaa Gheni, and Dhirgham Kamal Naji, "Optimal Design of a Circularly Polarized Antenna for LTE Bands 42/43 Applications," Progress In Electromagnetics Research C, Vol. 120, 223-241, 2022.
doi:10.2528/PIERC22041401
References

1. Gupta, A. and R. K. Jha, "A survey of 5G network: Architecture and emerging technologies," IEEE Access, Vol. 3, 1206-1232, 2015.
doi:10.1109/ACCESS.2015.2461602

2. Arya, A. K., S. J. Kim, S. Park, D.-H. Kim, R. S. Hassan, K. Ko, and S. Kim, "Shark-fin antenna for railway communications in LTE-R, LTE, and lower 5G frequency bands," Progress In Electromagnetics Research, Vol. 167, 83-94, 2020.
doi:10.2528/PIER20040201

3. Zhang, L., S. Gao, Q. Luo, P. R. Young, W. Li, and Q. Li, "Inverted-S antenna with wideband circular polarization and wide axial ratio beamwidth," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1740-1748, Apr. 2017.
doi:10.1109/TAP.2016.2628714

4. Beigmohammadi, G., C. Ghobadi, J. Nourinia, and M. Ojaroudi, "Small square slot antenna with circular polarisation characteristics for WLAN/WiMAX applications," Electronics Letters, Vol. 46, No. 10, 672-673, 2010.
doi:10.1049/el.2010.0623

5. Ko, S. T., B. C. Park, and J. H. Lee, "Dual band circularly polarized patchantenna with first positive and negative modes," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1165-1168, Sept. 2013.
doi:10.1109/LAWP.2013.2281320

6. Cai, T., G. M. Wang, X. F. Zhang, and J. P. Shi, "Low-profile compact circularly-polarized antenna based on fractal metasurface and fractal resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1072-1076, May 2015.
doi:10.1109/LAWP.2015.2394452

7. Kuhestani, H., M. Rahimi, and Z. Mansouri, "Dual-band counter circularly polarized radiation from a single-arm metamaterial-based spiral antenna," Microwave and Optimal Technology Letters, Vol. 57, 2015.

8. Verma, A., A. K. Singh, and N. Srivastava, "Slot loaded EBG-based metasurface for performance improvement of circularly polarized antenna for WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 3, 1-9, 2019.

9. Cao, W., X. Lv, Z. Zeng, J. Jin, and H. Liu, "Bandwidth enhanced dual-bandpatch-coupling microstrip antenna with omnidirectional CP and unidirectional CP characteristics," IET Microw. Antennas Propag., Vol. 13, No. 5, 584-590, 2019.
doi:10.1049/iet-map.2018.5427

10. Tran, H. H., S. X. Ta, and I. Park, "A compact circularly polarized crossed-dipole antenna for an RFID tag," IEEE Antennas Wireless Propag. Lett., Vol. 14, 674-677, Dec. 2014.

11. Lim, S., J. Chen, and C. Cato, "Design of a thin, electrically small, two-element parasitic array with circular polarization," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 6, 1006-1009, Jun. 2018.
doi:10.1109/LAWP.2018.2829201

12. Gao, S. S., Q. Luo, and F. Zhu, Circularly Polarized Antennas, Wiley, Hoboken, NJ, USA, 2014.
doi:10.1002/9781118790526

13. Shi, Y. and J. Liu, "A circularly polarized octagon-star-shaped microstrip patch antenna with conical radiation pattern," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2073-2078, Apr. 2018.
doi:10.1109/TAP.2018.2800801

14. Yang, W., Y. Pan, S. Zheng, and P. Hu, "A low-profile wideband circularly polarized crossed-dipole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2126-2129, May 2017.
doi:10.1109/LAWP.2017.2699975

15. Yang, H. C., X. Y. Liu, Y. Fan, and M. M. Tentzeris, "Flexible circularly polarized antenna with axial ratio bandwidth enhancement for off-body communications," IET Microw. Antennas Propag., Vol. 15, 754-767, 2021.
doi:10.1049/mia2.12081

16. Le, T. T., H. H. Tran, and A. A. Althuwayb, "Wideband circularly polarized antenna based on a non-uniform metasurface," Applied Sciences, Vol. 10, No. 23, 8652, 2020.
doi:10.3390/app10238652

17. Guo, Y.-X. and D. C. H. Tan, "Wideband single-feed circularly polarized patch antenna withconical radiation pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 924-926, Jul. 2009.

18. Zhang, H., Y. Guo, and G. Wang, "A wideband circularly polarized crossed-slot antenna with stable phase center," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 5, 941-945, May 2019.
doi:10.1109/LAWP.2019.2906363

19. Yaseen, R. M., D. K. Naji, and A. M. Shakir, "Optimization design methodology of broadband or multiband antenna for RF energy harvesting applications," Progress In Electromagnetics Research B, Vol. 93, 169-194, 2021.
doi:10.2528/PIERB21070104

20. Boursianis, D., et al. "Multiband patch antenna design using nature-inspired optimization method," IEEE Open Journal of Antennas and Propagation, Vol. 2, 151-162, 2021.
doi:10.1109/OJAP.2020.3048495

21. Jabar, A. A. S. A. and D. K. Naji, "Optimization design methodology of miniaturized five-band antenna for RFID, GSM, and WiMAX applications," Progress In Electromagnetics Research B, Vol. 83, 177-201, 2019.
doi:10.2528/PIERB19012905

22. Moore, M., Z. Iqbal, and S. Lim, "A size-reduced, broadband, bidirectional, circularly polarized antenna for potential application in WLAN, WiMAX, 4G, and 5G frequency bands," Progress In Electromagnetics Research C, Vol. 114, 1-11, 2021.
doi:10.2528/PIERC21051801

23. Pietrenko-Dabrowska, A. and S. Koziel, "Expedited antenna optimization with numerical derivatives and gradient change tracking," Engineering Computations, Vol. 37, No. 4, 1179-1193, 2020.
doi:10.1108/EC-04-2019-0155

24. Balanis, C. A., Antenna Theory Analysis and Design, 4th Edition, John Wiley & Sons, 2016.