Vol. 120
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-06-13
Model Predictive Control of Permanent Magnet Synchronous Motor Based on Parameter Identification and Dead Time Compensation
By
Progress In Electromagnetics Research C, Vol. 120, 253-263, 2022
Abstract
A model predictive control method for permanent magnet synchronous motor based on parameter identification and dead time compensation is proposed to solve the problems of poor parameter robustness and large current errors. In this method, the prediction model is firstly established based on the mathematical model of the permanent magnet synchronous motor. After that, the current error caused by the parameter change in the prediction model and the current harmonics caused by the dead time effect are basically analyzed theoretically. Then, the adaptive linear neural network algorithm is proposed to identify the motor parameters and applied to the prediction model, and the harmonic components are filtered out using the adaptive linear neural network algorithm. The recursive least squares algorithm is used to quickly update the system weights to improve the dead time compensation control effect. Finally, the effectiveness and correctness of the proposed algorithm are verified on the experimental platform. The experimental results show that the predictive control method of permanent magnet synchronous motor model based on parameter identification and dead time compensation can effectively reduce the current error of the control system and accelerate the dynamic response of the speed.
Citation
Xin Liu, Yanfei Pan, Lin Wang, Jian Xu, Yilin Zhu, and Zhongshu Li, "Model Predictive Control of Permanent Magnet Synchronous Motor Based on Parameter Identification and Dead Time Compensation," Progress In Electromagnetics Research C, Vol. 120, 253-263, 2022.
doi:10.2528/PIERC22040103
References

1. Sun, Y., Q. Cui, and Y. Yuan, "Research on control of permanent magnet synchronous motor based on second-order sliding mode," Progress In Electromagnetics Research M, Vol. 85, 11-20, 2019.
doi:10.2528/PIERM19070201

2. Huang, Y., T. Tao, Y. Liu, K. Chen, and F. Yang, "DSC-FLL based sensorless control for permanent magnet synchronous motor," Progress In Electromagnetics Research M, Vol. 98, 171-181, 2020.
doi:10.2528/PIERM20100501

3. Zhu, L., B. Xu, and H. Zhu, "Interior permanent magnet synchronous motor dead-time compensation combined with extended Kalman and neural network bandpass filter," Progress In Electromagnetics Research M, Vol. 98, 193-203, 2020.
doi:10.2528/PIERM20100903

4. Liu, X., Y. Pan, Y. Zhu, H. Han, and L. Ji, "Decoupling control of permanent magnet synchronous motor based on parameter identification of fuzzy least square method," Progress In Electromagnetics Research M, Vol. 103, 49-60, 2021.
doi:10.2528/PIERM21032601

5. Zhu, Y., Y. Bai, H. Wang, and L. Sun, "Sensorless control of permanent magnet synchronous motor based on T-S fuzzy inference algorithm fractional order sliding mode," Progress In Electromagnetics Research M, Vol. 105, 161-172, 2021.
doi:10.2528/PIERM21072503

6. Fan, M., H. Lin, and T. Lan, "Model predictive direct torque control for spmsm with load angle limitation," Progress In Electromagnetics Research B, Vol. 58, 245-256, 2014.
doi:10.2528/PIERB14021106

7. Wang, Z., A. Yu, X. Li, G. Zhang, and C. Xia, "A novel current predictive control based on fuzzy algorithm for PMSM," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 7, No. 2, 990-1001, Jun. 2019.
doi:10.1109/JESTPE.2019.2902634

8. Zhang, X., L. Zhang, and Y. Zhang, "Model predictive current control for PMSM drives with parameter robustness improvement," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 1645-1657, Feb. 2019.
doi:10.1109/TPEL.2018.2835835

9. Niu, S., Y. Luo, W. Fu, and X. Zhang, "Robust model predictive control for a three-phase PMSM motor with improved control precision," IEEE Transactions on Industrial Electronics, Vol. 68, No. 1, 838-849, Jan. 2021.
doi:10.1109/TIE.2020.3013753

10. Zhang, Y., J. Jin, and L. Huang, "Model-free predictive current control of PMSM drives based on extended state observer using ultralocal model," IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, 993-1003, Feb. 2021.
doi:10.1109/TIE.2020.2970660

11. Li, X., W. Tian, X. Gao, Q. Yang, and R. Kennel, "A generalized observer-based robust predictive current control strategy for PMSM drive system," IEEE Transactions on Industrial Electronics, Vol. 69, No. 2, 1322-1332, Feb. 2022.
doi:10.1109/TIE.2021.3062271

12. Gao, M., H. Zhu, and Y. Shi, "Predictive direct control of permanent magnet assisted bearingless synchronous reluctance motor based on super twisting sliding mode," Progress In Electromagnetics Research M, Vol. 102, 105-115, 2021.
doi:10.2528/PIERM21031503

13. Zhu, H. and M. Wu, "Direct control of bearingless permanent magnet synchronous motor based on prediction model," Progress In Electromagnetics Research M, Vol. 101, 127-138, 2021.
doi:10.2528/PIERM20121401

14. Ji, Y., Y. Yong, J Zhou, H. Ding, X. Guo, and S. Padmanaban, "Control strategies of mitigating dead-time effect on power converters: An overview," Electronics, Vol. 8, No. 2, 196, 2019.
doi:10.3390/electronics8020196