Vol. 120
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-05-10
A Novel Antipodal Vivaldi Antenna with Quad Band Notch Characteristics for UWB Applications
By
Progress In Electromagnetics Research C, Vol. 120, 119-133, 2022
Abstract
This work presents a design and analysis of a high gain Antipodal Vivaldi Antenna (AVA) with quad band notch characteristics for Ultra-Wideband (UWB) applications. The proposed AVA is designed on a 1.2 mm FR4 substrate with dielectric constant 4.3 and loss tangent 0.025. Initially, the AVA parameters are optimized in a full wave simulator to get the required UWB performance. The UWB performance is further improved significantly by cutting a C shaped slot from the AVA flares. The C shaped slot introduces an extra resonance that widens the initial bandwidth. The band-notched filtering characteristics are achieved by - adding a Sun Shaped Slot (SSS) on the top and bottom flares of the AVA, inserting a hexagonal shaped Complimentary Split Ring Resonator (CSRR) on the ground plane of the AVA and finally by inserting vias on either side of the feed line. The first designed notch band is from 2.2-2.7 GHz, covering the Bluetooth region. The second notch band is designed from 3.3-3.6 GHz, corresponding to WiMAX applications, and the third notch band is from 4.6-5.7 GHz corresponding to the WLAN band. Finally, a notch is fashioned from 8.8-9.5 GHz, corresponding to ITU applications. The simulated and measured return loss plots show that the antenna achieves an impedance bandwidth of 1.15-14 GHz with a reflection coefficient less than -10 dB, except at the four eliminating bands. To the best of the authors knowledge, the proposed technique is novel, and it allows good narrowband rejection over the UWB regime.
Citation
Vikas Kumar Rai, Mithilesh Kumar, and Shyama Prasad Chakraborty, "A Novel Antipodal Vivaldi Antenna with Quad Band Notch Characteristics for UWB Applications," Progress In Electromagnetics Research C, Vol. 120, 119-133, 2022.
doi:10.2528/PIERC22022402
References

1. Federal Communications Commission "First Report and Order, Revision of Part 15 of the Commission's Rule Regarding Ultra-Wideband,", 2002.
doi:10.1109/LAWP.2008.2001026

2. Ahmed, O. and A. R. Sebak, "A printed monopole antenna with two steps and a circular slot for UWB applications," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 411-413, 2008.
doi:10.1109/TAP.1959.1144653

3. Dyson, J., "The equiangular spiral antenna," IRE Trans. Antennas Propagat., Vol. 7, 181-187, 1959.
doi:10.1109/IRECON.1957.1150566

4. DuHamel, R. and D. Isbell, "Broadband logarithmically periodic antenna structures," IRE Nat. Conv. Rec., 119-128, 1957.

5. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eur. Microw. Conf., 101-105, Brighton, U.K., Jun. 1979.
doi:10.1016/j.aeue.2015.05.017

6. Abhik, G., K. Anirban, P. Manimala, and G. Rowdra, "A super wideband Chebyshev tapered antipodal Vivaldi antenna," AEU Int. J. Electron. Commun., Vol. 69, 1328, 2015.
doi:10.1016/j.aeue.2016.10.007

7. Furat, A. and F. Pascal, "A customized reduced size antipodal Vivaldi antenna used in wireless baseband transmission for short-range communication," AEU Int. J. Electron. Commun., Vol. 70, 1684-1688, 2016.
doi:10.1109/LAWP.2015.2457919

8. Moosazadeh, M. and S. Kharkovsky, "A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 552-525, Mar. 2016.
doi:10.1049/iet-map.2015.0374

9. Moosazadeh, M., S. Kharkovsky, and J. T. Case, "Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials," IET Microwaves Antennas Propag., Vol. 10, No. 3, 301-309, 2016.
doi:10.1016/j.aeue.2016.10.001

10. Wang, Z., J. Liu, and Y. Yin, "Triple band-notched UWB antenna using novel asymmetrical resonators," AEU Int. J. Electron. Commun., Vol. 70, 1630-1637, 2016.
doi:10.1109/LAWP.2015.2496159

11. Li, W.-A., Z.-H. Tu, Q.-X. Chu, and X.-H. Wu, "Differential stepped-slot UWB antenna with common-mode suppression and dual sharp-selectivity notched bands," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1120-1123, 2016.
doi:10.1109/TAP.2013.2261575

12. Chu, Q.-X., C.-X. Mao, and H. Zhu, "A compact notched band UWB slot antenna with sharp selectivity and controllable bandwidth," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 3961-3966, Aug. 2013.

13. Reddy, K. A., S. Natarajamani, and S. K. Behera, "Antipodal Vivaldi antenna UWB antenna with 5.5 GHz band-notch characteristics," Proc.Int. Conf. Comput., Electron. Elect. Technol., 821-824, Kumaracoil, India, 2012.
doi:10.1049/el.2009.2170

14. Ye, L.-H. and Q.-X. Chu, "Improved band notched UWB slot antenna," Electron. Lett., Vol. 45, No. 25, 1890-1897, Dec. 2009.
doi:10.1109/TMAG.2013.2283774

15. Choi, H.-S., T.-W. Kim, H.-Y. Hwang, and K. Choi, "An UWB antenna design with adjustable second rejection band using a SIR," IEEE Trans. Magn., Vol. 50, No. 2, 913-916, Feb. 2014.
doi:10.1109/TAP.2014.2327124

16. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4015-4020, Aug. 2014.

17. Yang, D., S. Liu, M. Chen, and Y. Wen, "A compact Vivaldi antenna with triple band-notched characteristics," Proc. IEEE 6th Int. Symp. Microw., Antenna, Propag., EMC Technol., 216-219, Shanghai, China, 2015.

18. Sarkar, D. and K. V. Srivastava, "SRR-loaded antipodal Vivaldi antenna for UWB applications with tunable notch function," Proc. Int. Symp. Electromagn. Theory, 466-469, Hiroshima, Japan, 2013.

19. John, M., M. J. Ammann, and P. McEvoy, "UWB vivaldi antenna based on a spline geometry with frequency band-notch," Proc. IEEE Int. Symp. Antennas Propag. Soc. (AP-S), 1-4, Jul. 5-11, 2008.

20. Aravinda Reddy, K., S. Natarajamani, and S. K. Behera, "Antipodal Vivaldi antenna UWB antenna with 5.5 GHz band-notch characteristics," International Conference on Computing, Electronics and Electrical Technologies (ICCEET), 821-824, Kumaracoil, 2012.
doi:10.1109/ICMMT.2016.7762454

21. Yao, L., J. Xiao, H. Zhu, N. Li, and X. Li, "A high gain UWB Vivaldi antenna with band notched using Capacitively Loaded Loop (CLL) resonators," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 820-822, Beijing, 2016.

22. Yang, D., S. Liu, M. Chen, and Y. Wen, "A compact Vivaldi antenna with triple band-notched characteristics," IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 216-219, Shanghai, 2015.

23. Zhang, B., K. Zhang, S. Yang, and H. Zhai, "A Vivaldi antenna with adjustable in-band notched characteristic," Asia Paci c International Symposium on Electromagnetic Compatibility (APEMC), 713-715, Shenzhen, 2016.

24. Constantine, A., Balanis Antenna Theory: Analysis and Design, 1072, 3rd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
doi:10.1155/2015/439832

25. Alshamaileh, K. A., M. J. Almalkawi, and V. K. Devabhaktuni, "Dual band-notched microstrip-fed Vivaldi antenna utilizing compact EBG structures," International Journal of Antennas and Propagation, Vol. 2, 1-7, 2015.

26. Abubakar, S. A., T. H. Masri, W. A. W. Z. Abidin, K. H. Ping, and H. T. Su, "Corrugated band-notched antipodal Vivaldi antenna using mushroom type EBG structure for wideband applications,".
doi:10.1155/2014/761634

27. Elsheakh, D. M. and E. A. Abdallah, "Ultrawideband Vivaldi antenna for DVB-T, WLAN, and WiMAX applications," International Journal of Antennas and Propagation, 2014.
doi:10.1109/LAWP.2014.2329496

28. Tang, T. and K. Lin, "An ultrawideband MIMO antenna with dual band-notched function," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1076-1079, 2014.
doi:10.1109/LAWP.2015.2422571

29. Kang, L., H. Li, X. Wang, and X. Shi, "Compact offset microstrip-fed MIMO antenna for band-notched UWB applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1754-1757, 2015.
doi:10.2528/PIERC14042101

30. Zhao, H., F.-S. Zhang, and X.-K. Zhang, "A compact band-notched Ultra-wideband spatial diversity antenna," Progress In Electromagnetics Research C, Vol. 51, 19-26, 2014.
doi:10.1109/LAWP.2014.2305772

31. Gao, P., S. He, and X. Wei, "Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 13, 376-379, 2014.
doi:10.1109/TAP.2015.2406892

32. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Trans. Antennas and Propag., Vol. 63, No. 5, 1917-1924, May 2015.

33. Li, D. H., F. S. Zhang, L. X. Cao, and Y. Zhao, "A compact dual band-rejected MIMO Vivaldi antenna for UWB wireless applications," Progress In Electromagnetics Research Letters, Vol. 86, 97-105, 2019.
doi:10.2528/PIERC19031202

34. Sultan, K. S. and H. H. Abdullah, "Planar UWB MIMO-diversity antenna with dual notch characteristics," Progress In electromagnetics Research C, Vol. 93, 119-129, 2019.
doi:10.4236/ojapr.2017.53008

35. Sultan, K. S., O. M. A. Dardeer, and H. A. Mohamed, "Design of compact dual notched self-complementary UWB antenna," Open Journal of Antennas and Propagation, Vol. 5, No. 3, 99-109, 2017.