1. Sulyman, A. I., A. T. Nassar, M. K. Samimi, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE Communications Magazine, Vol. 52, No. 9, 78-86, 2014.
doi:10.1109/MCOM.2014.6894456
2. Stevenson, A. F., "Theory of slots in rectangular wave-guides," J. Appl. Phys., Vol. 19, 24-38, 1948.
doi:10.1063/1.1697868
3. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463
4. Liu, J., X. Tang, Y. Li, and Y. Long, "Substrate integrated waveguide leaky-wave antenna with H-shaped slots," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3962-3967, 2012.
doi:10.1109/TAP.2012.2201085
5. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, 2016.
6. Patanvariya, D. G. and A. Chatterjee, "Modified-T shaped wideband antenna for Ka-band applications," International Conference on Communication and Signal Processing (ICCSP), 1654-1658, 2020.
doi:10.1109/ICCSP48568.2020.9182254
7. Mukherjee, S., A. Biswas, and K. V. Srivastava, "Substrate integrated waveguide cavity-backed dumbbell-shaped slot antenna for dual-frequency applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1314-1317, 2014.
8. Xie, H., L. Belostotski, and M. Okoniewski, "A Q-band high-gain substrate-integrated waveguide slot antenna," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1370-1374, 2015.
doi:10.1002/mop.29087
9. Mukherjee, S. and A. Biswas, "Design of dual band and dual-polarised dual band SIW cavity backed bow-tie slot antennas," IET Microwaves, Antennas & Propagation, Vol. 10, No. 9, 1002-1009, 2016.
doi:10.1049/iet-map.2015.0786
10. Nandi, S. and A. Mohan, "Bowtie slotted dual-band SIW antenna," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2303-2308, 2016.
doi:10.1002/mop.30035
11. Wu, Q., J. Yin, C. Yu, H. Wang, and W. Hong, "Low-profile millimeter-wave SIW cavity-backed dual-band circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7310-7315, 2017.
doi:10.1109/TAP.2017.2758165
12. Wei, D. J., J. Li, G. Yang, J. Liu, and J. J. Yang, "Design of compact dual-band SIW slotted array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1085-1089, 2018.
doi:10.1109/LAWP.2018.2833117
13. Deckmyn, T., M. Cauwe, D. V. Ginste, H. Rogier, and S. Agneessens, "Dual-band (28, 38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2405-2412, 2019.
doi:10.1109/TAP.2019.2894325
14. Lai, F. P., L. W. Chang, and Y. S. Chen, "Miniature dual-band substrate integrated waveguide slotted antenna array for millimeter-wave 5G applications," International Journal of Antennas and Propagation, Vol. 3, 1-10, 2020.
doi:10.1155/2020/6478272
15. Feng, B., X. He, and J. C. Cheng, "Dual-wideband dual-polarized metasurface antenna array for the 5G millimeter wave communications based on characteristic mode theory," IEEE Access, Vol. 8, 21589-21601, 2020.
doi:10.1109/ACCESS.2020.2968964
16. Patanvariya, D. G. and A. Chatterjee, "A compact bow-tie shaped wide-band microstrip patch antenna for future 5G communication networks," Radioengineering, Vol. 30, No. 1, 2021.
doi:10.13164/re.2021.0040
17. CST Studio Suite, Computer Simulation Technology, [Online], Available: https://www.cst.com.