Vol. 119
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-14
Large Intelligent Surface-Assisted Wireless Communication and Path Loss Prediction Model Based on Electromagnetics and Machine Learning Algorithms
By
Progress In Electromagnetics Research C, Vol. 119, 65-79, 2022
Abstract
This paper presents the application of machine learning-based approach toward prediction of path loss for the large intelligent surface-assisted wireless communication in smart radio environment. Two bagging ensemble methods, namely K-nearest neighbor and random forest, are exploited to build the path loss prediction models by using the training dataset. To generate the data samples without having to run measurement campaign, a path loss model is developed owning to the similarity between the large intelligent surface-assisted wireless communication and the reflector antenna system. Simple path loss expression is deduced from the system gain of the reflector antenna system, and it is used to generate the data samples. Simulation results are presented to verify the prediction accuracy of the path loss predictions models. The prediction performances of the trained path loss models are assessed based on the complexity and accuracy metrics, including R2 score, mean absolute error, and root mean square error. It is demonstrated that the machine learning-based models can provide high prediction accuracy and acceptable complexity. The K-nearest neighbor algorithm outperforms random forest algorithm, and it has smaller prediction errors.
Citation
Wael Elshennawy, "Large Intelligent Surface-Assisted Wireless Communication and Path Loss Prediction Model Based on Electromagnetics and Machine Learning Algorithms," Progress In Electromagnetics Research C, Vol. 119, 65-79, 2022.
doi:10.2528/PIERC22013002
References

1. Yuan, J., H. Q. Ngo, and M. Matthaiou, "Towards large intelligent surface (LIS)-based communications," IEEE Transactions on Communications, Vol. 68, No. 10, 6568-6582, 2020.

2. Najafi, M., V. Jamali, R. Schober, and H. V. Poor, "Physics-based modeling and scalable optimization of large intelligent reflecting surfaces," IEEE Transactions on Communications, Vol. 69, No. 4, 2673-2691, 2021.

3. Dardari, D., "Communicating with large intelligent surfaces: Fundamental limits and models," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2526-2537, 2020.

4. Han, Y., W. Tang, S. Jin, C.-K. Wen, and X. Ma, "Large intelligent surface-assisted wireless communication exploiting statistical CSI," IEEE Transactions on Vehicular Technology, Vol. 68, No. 8, 8238-8242, 2019.

5. Kundu, N. K. and M. R. Mckay, "Large intelligent surfaces with channel estimation overhead: Achievable rate and optimal configuration," IEEE Wireless Communications Letters, Vol. 10, No. 5, 986-990, 2021.

6. Taha, A., M. Alrabeiah, and A. Alkhateeb, "Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems," 2019 IEEE Global Communications Conference (GLOBECOM), 1-6, 2019.

7. Di Renzo, M., F. Habibi Danufane, X. Xi, J. de Rosny, and S. Tretyakov, "Analytical modeling of the path-loss for reconfigurable intelligent surfaces - Anomalous mirror or scatterer?," 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1-5, 2020.

8. Tang, W., M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, "Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement," IEEE Transactions on Wireless Communications, Vol. 20, No. 1, 421-439, 2021.

9. Yildirim, I., A. Uyrus, and E. Basar, "Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks," IEEE Transactions on Communications, Vol. 69, No. 2, 1290-1301, 2021.

10. Wen, J., Y. Zhang, G. Yang, Z. He, and W. Zhang, "Path loss prediction based on machine learning methods for aircraft cabin environments," IEEE Access, Vol. 7, 159251-159261, 2019.

11. Zhang, Y., J. Wen, G. Yang, Z. He, and J. Wang, "Path loss prediction based on machine learning: Principle, method, and data expansion," Applied Sciences, Vol. 9, No. 9, 2019, [Online]. Available: https://www.mdpi.com/2076-3417/9/9/1908.

12. Duangsuwan, S., P. Juengkittikul, and M. Myint Maw, "Path loss characterization using machine learning models for GS-to-UAV-enabled communication in smart farming scenarios," International Journal of Antennas and Propagation, Vol. 2021, 5524709, Aug. 2021, [Online]. Available: https://doi.org/10.1155/2021/5524709.

13. Aldossari, S. and K.-C. Chen, "Predicting the path loss of wireless channel models using machine learning techniques in mmWave urban communications," 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), 1-6, 2019.

14. Juang, R.-T., "Explainable deep-learning-based path loss prediction from path profiles in urban environments," Applied Sciences, Vol. 11, No. 15, 2021, [Online]. Available: https://www.mdpi.com/2076-3417/11/15/6690.

15. Zhang, Y., J. Wen, G. Yang, Z. He, and X. Luo, "Air-toair path loss prediction based on machine learning methods in urban environments," Wireless Communications and Mobile Computing, Vol. 2018, 8489326, Jun. 2018, [Online]. Available: https://doi.org/10.1155/2018/8489326.

16. Ellingson, S. W., "Path loss in reconfigurable intelligent surface-enabled channels," 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 829-835, IEEE, 2021.

17. Molisch, A. F., K. Balakrishnan, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, Johan, Karedal, J. Kunisch, H. G. Schantz, U. G. Schuster, and K. Siwiak, "IEEE 802.15.4a channel model-final report,", 2004.

18. Hu, S., F. Rusek, and O. Edfors, "Beyond massive MIMO: The potential of data transmission with large intelligent surfaces," IEEE Transactions on Signal Processing, Vol. 66, No. 10, 2746-2758, 2018.

19. Jide, Y., H.-Q. Ngo, and M. Matthaiou, "Large intelligent surface (LIS)-based communications: New features and system layouts," IEEE International Conference on Communications, IEEE, arXiv:2002.12183, Feb. 2020.

20. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.

21. Greenquist, R. E. and A. J. Orlando, "An analysis of passive reflector antenna systems," Proceedings of the IRE, Vol. 42, No. 7, 1173-1178, 1954.

22. Silver, S., Microwave Antenna Theory and Design, S. Silver, et al., Ed., [Massachusetts Institute of Technology. Radiation Laboratory Series. No. 12], 1949, [Online]. Available: https://books.google.com.eg/books?id=Fi42MwEACAAJ.

23. MATLAB "Version 7.10.0 (R2010a),", Natick, The MathWorks Inc., Massachusetts, 2010.

24. Ozdogan, O., E. Bjornson, and E. G. Larsson, "Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling," IEEE Wireless Communications Letters, Vol. 9, No. 5, 581-585, 2020.

25. Muller, A. and S. Guido, "Introduction to machine learning with python: A guide for data scientists,", O'Reilly Media, 2016, [Online]. Available: https://books.google.com.eg/books?id=vbQlDQAAQBAJ.

26. Huang, J., N. Huang, L. Zhang, and H. Xu, "A method for feature selection based on the correlation analysis," Proceedings of 2012 International Conference on Measurement, Information and Control, Vol. 1, 529-532, 2012.

27. Mohammed, R., J. Rawashdeh, and M. Abdullah, "Machine learning with oversampling and undersampling techniques: Overview study and experimental results," 2020 11th International Conference on Information and Communication Systems (ICICS), 243-248, 2020.

28. Ray, S., "A quick review of machine learning algorithms," 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35-39, 2019.

29. Popoola, S. I., A. Jefia, A. A. Atayero, O. Kingsley, N. Faruk, O. F. Oseni, and R. O. Abolade, "Determination of neural network parameters for path loss prediction in very high frequency wireless channel," IEEE Access, Vol. 7, 150 462-150 483, 2019.

30. Breiman, L., "Random forests," Machine Learning, Vol. 45, No. 1, 5-32, Oct. 2001, [Online]. Available: https://doi.org/10.1023/A:1010933404324.

31. Breiman, L., "Bagging predictors," Machine Learning, Vol. 24, No. 2, 123-140, Aug. 1996, [Online]. Available: https://doi.org/10.1007/BF00058655.

32. Rahim, A., Y. Rasheed, F. Azam, M. W. Anwar, M. A. Rahim, and A. W. Muzaffar, "An integrated machine learning framework for effective prediction of cardiovascular diseases," IEEE Access, Vol. 9, 106 575-106 588, 2021.

33. Buitinck, L., G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, "API design for machine learning software: Experiences from the scikit-learn project," ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 108-122, 2013.

34. Lin, W., Z. Wu, L. Lin, A. Wen, and J. Li, "An ensemble random forest algorithm for insurance big data analysis," IEEE Access, Vol. 5, 16 568-16 575, 2017.

35. Matsushita, Y. and T. Wada, "Principal component hashing: An accelerated approximate nearest neighbor search," Proceedings of the 3rd Pacific Rim Symposium on Advances in Image and Video Technology, Springer-Verlag, Heidelberg, Berlin, 2009, [Online]. Available: https://doi.org/10.1007/978-3-540-92957-4_33.

36. Jouppi, N. P., C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-L. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, "In-datacenter performance analysis of a tensor processing unit," 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), 1-12, 2017.

37. "Anaconda software distribution,", 2020, [Online]. Available: https://docs.anaconda.com/.