Vol. 119
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-09
The Design and Implementation of an RF Energy Harvesting System Using Dynamic Pi-Matching, Enabling Low-Power Device Activation and Energy Storage
By
Progress In Electromagnetics Research C, Vol. 119, 49-63, 2022
Abstract
Radio-frequency electromagnetic waves can be harnessed to produce an alternative source of energy to replace batteries in many low-power device applications. An efficient radio frequency (RF) energy harvesting circuit was designed and constructed using a dynamic Pi-matching network in order to convert frequency-modulated electromagnetic waves in the range of 88-108 MHz to direct current through a 3-step process. The circuit consists of a 50 Ω copper plate dipole antenna, a Pi impedance matching network, and a five-stage voltage doubler circuit. These three modules are connected through SubMiniature version A (SMA) connectors for convenient assembly. The dynamic Pi matching technique for RF energy harvesting is theoretically explained and simulated in the Advance Design System software environment. The experimental values obtained in this proposed work are in good agreement with the simulations. The harvesting system is capable of producing up to 14.3 V direct current voltage across a 100 kΩ load in field tests carried out at a displacement of 760 m from a transmission tower. At 6.7 km from the tower, a DC value of 61.5 mV was still obtainable at the ground level. The direct-current power that was generated through the energy harvesting was applied for the demonstration of three tasks with satisfactory results: illuminating a light-emitting diode, energy storage in a Panasonic VL2020 rechargeable battery, and activation of a TMP20AIDCKT temperature sensor in an urban area which enabled low power device activation and energy storage.
Citation
Beragama Vithanage Sandaru Suwan, Wijesekara Withana Gamage Vidula, Wanniarachchi Kankanamge Indika Lasantha Wanniarachchi, Chandima Helakumara Manathunga, and Sasani Jayawardhana, "The Design and Implementation of an RF Energy Harvesting System Using Dynamic Pi-Matching, Enabling Low-Power Device Activation and Energy Storage," Progress In Electromagnetics Research C, Vol. 119, 49-63, 2022.
doi:10.2528/PIERC21121802
References

1. Geran, F., N. Mirzababaee, and S. Mohanna, "RF power harvester using a broadband monopole antenna and a quad-band rectifier," International Journal of Industrial Electronics, Control and Optimization, 2020.

2. Mouapi, A., N. Hakem, and N. Kandil, "Design of 900 MHz radio frequency energy harvesting circuit for the internet of things applications," 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1-6, IEEE, June 2020.

3. Md. Din, N., C. K. Chakrabarty, A. Bin Ismail, K. K. A. Devi, and W.-Y. Chen, "Design of RF energy harvesting system for energizing low power devices," Progress In Electromagnetics Research, Vol. 132, 49-69, 2012.
doi:10.2528/PIER12072002

4. Moghaddam, N. A., A. Maleki, M. Shirichian, and N. S. Panah, "RF energy harvesting system and circuits for charging of wireless devices using spectrum sensing," 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 431-436, IEEE, December 2017.
doi:10.1109/ICECS.2017.8292044

5. Arrawatia, M., M. S. Baghini, and G. Kumar, "RF energy harvesting system from cell towers in 900 MHz band," 2011 National Conference on Communications (NCC), 1-5, IEEE, January 2011.

6. Gunathilaka, W. M. D. R., H. G. C. P. Dinesh, G. G. C. M. Gunasekara, K. M. M. W. N. B. Narampanawe, and J. V. Wijayakulasooriya, "Ambient radio frequency energy harvesting," 2012 IEEE 7th International Conference on Industrial and Information Systems (ICIIS), 1-5, IEEE, August 2012.

7. Arrawatia, M., M. S. Baghini, and G. Kumar, "Differential microstrip antenna for RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 1581-1588, 2015.
doi:10.1109/TAP.2015.2399939

8. Colaiuda, D., I. Ulisse, and G. Ferri, "Rectifiers' design and optimization for a dual-channel RF energy harvester," Journal of Low Power Electronics and Applications, Vol. 10, No. 1, 11, 2020.
doi:10.3390/jlpea10020011

9. Farinholt, K. M., G. Park, and C. R. Farrar, "RF energy transmission for a low-power wireless impedance sensor node," IEEE Sensors Journal, Vol. 9, No. 7, 793-800, 2009.
doi:10.1109/JSEN.2009.2022536

10. Chang, Y., P. Zhang, and L. Wang, "Highly efficient differential rectenna for RF energy harvesting," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2662-2668, 2019.
doi:10.1002/mop.31945

11. Chiam, T. M., L. C. Ong, M. F. Karim, and Y. X. Guo, "5.8 GHz circularly polarized rectennas using schottky diode and LTC5535 rectifier for RF energy harvesting," 2009 Asia Pacific Microwave Conference, 32-35, IEEE, December 2009.
doi:10.1109/APMC.2009.5385503

12. Pham, B. L. and A. V. Pham, "Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-3, IEEE, June 2013.

13. Elsheakh, D., M. Farouk, H. Elsadek, and H. Ghali, "Quad-band rectenna for RF energy harvesting system," Journal of Electromagnetic Analysis and Applications, Vol. 12, No. 3, 57-70, 2020.

14. Kumar, H., M. Arrawatia, and G. Kumar, "Broadband planar log-periodic dipole array antenna based RF-energy harvesting system," IETE Journal of Research, Vol. 65, No. 1, 39-43, 2019.
doi:10.1080/03772063.2017.1385427

15. Ungan, T. and L. M. Reindl, "Harvesting low ambient RF-sources for autonomous measurement systems," 2008 IEEE Instrumentation and Measurement Technology Conference, 62-65, IEEE, May 2008.
doi:10.1109/IMTC.2008.4547005

16. Le, T., K. Mayaram, and T. Fiez, "Efficient far-field radio frequency energy harvesting for passively powered sensor networks," IEEE Journal of Solid-State Circuits, Vol. 43, No. 3, 1287-1302, 2008.
doi:10.1109/JSSC.2008.920318

17. Jabbar, H., Y. S. Song, and T. T. Jeong, "RF energy harvesting system and circuits for charging of mobile devices," IEEE Transactions on Consumer Electronics, Vol. 56, No. 1, 247-253, 2010.
doi:10.1109/TCE.2010.5439152

18. Scorcioni, S., L. Larcher, and A. Bertacchini, "Optimized CMOS RF-DC converters for remote wireless powering of RFID applications," 2012 IEEE International Conference on RFID (RFID), 47-53, IEEE, April 2012.

19. Gao, H., M. K. Matters-Kamrnerer, P. Harpe, D. Milosevic, U. Johannsen, A. van Roermund, and P. Baltus, "A 71 GHz RF energy harvesting tag with 8% efficiency for wireless temperature sensors in 65 nm CMOS," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 403-406, IEEE, June 2013.
doi:10.1109/RFIC.2013.6569616

20. Cepeda Rubio, M. F. J., G. D. Guerrero López, F. Valdés Perezgasga, F. Flores García, A. Vera Hernández, and L. Leija Salas, "Computer modeling for microwave ablation in breast cancer using a coaxial slot antenna," International Journal of Thermophysics, Vol. 36, No. 10-11, 2687-2704, 2015.
doi:10.1007/s10765-015-1931-2

21. Gas, P. and J. Czosnowski, "Calculation of the coaxial-slot antenna characteristics used for the interstitial microwave hyperthermia treatment," Przeglad Elektrotechniczny, Vol. 90, No. 3, 176-178, 2014.

22. Gas, P., "Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S11-parameter analysis," Biocybernetics and Biomedical Engineering, Vol. 37, No. 1, 78-93, 2017.
doi:10.1016/j.bbe.2016.10.001

23. Bertram, J. M., D. Yang, M. C. Converse, J. G. Webster, and D. M. Mahvi, "Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model," Biomedical Engineering Online, Vol. 5, No. 1, 1-9, 2006.
doi:10.1186/1475-925X-5-15

24. Bird, T. S., "Definition and misuse of return loss [report of the transactions editor-in-chief]," IEEE Antennas and Propagation Magazine, Vol. 51, No. 1, 166-167, 2009.
doi:10.1109/MAP.2009.5162049

25. Khalid, F., W. Saeed, N. Shoaib, M. U. Khan, and H. M. Cheema, "Quad-band 3D rectenna array for ambient RF energy harvesting," International Journal of Antennas and Propagation, 2020, 2020.

26. Park, J. K., Y. H. Cho, J. M. Kim, S. H. Kim, J. S. Yoo, W. Y. Lee, I. Y. Lee, J. S. Kim, and D. H. Kim, "FM radio chip antenna using magneto-dielectric," 2007 Asia-Pacific Microwave Conference, 1-3, IEEE, December 2007.

27. Borja, C., J. Anguera, C. Puente, and J. Vergés, "How much can be reduced the internal FM antenna of mobiles phones?," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-5, IEEE, April 2010.

28. Bowick, C., C. Ajluni, and J. Blyler, RF Circuit Design, 2008.

29. Yan, H., J. M. Montero, A. Akhnoukh, L. C. De Vreede, and J. Burghartz, "An integration scheme for RF power harvesting," Proc. STW Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, Vol. 2005, 64-66, November 2005.

30. Devi, K. K. A., N. M. Din, and C. K. Chakrabarthy, "Optimization of the voltage doubler stages in an RF-DC convertor module for energy harvesting," Circuits and Systems, Vol. 3, No. 3, Jul. 2012.

31., Ti.com. 2021. [online] Available at: https://www.ti.com/lit/ds/symlink/tmp20.pdf?ts=161210780-8539&ref url=https%253A%252F%252Fwww.google.com%252F [Accessed 26 July 2020].