Vol. 117
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-01-05
Wideband Designs of Regular Shape Microstrip Antennas Using Modified Ground Plane
By
Progress In Electromagnetics Research C, Vol. 117, 203-219, 2021
Abstract
Wideband designs of proximity fed regular shape microstrip antennas using bow-tie and H-shape ground plane profile are proposed in 1000 MHz frequency range. The modified ground plane alters the quality factor of the patch cavity which enhances the impedance bandwidth. In terms of the results obtained for bandwidth and gain together, circular and square patches backed by bow-tie shape ground plane, followed by circular patch backed by H-shape ground plane yield optimum results. For substrate thickness of 0.097λg, against the conventional ground plane, bow-tie shape gives 12% and 24% bandwidth increment for circular and square patches, respectively, and H-shape ground plane yields bandwidth increment by 17% in circular patch. All these wideband designs offer peak gain around 6 dBi with a broadside radiation pattern. Further, modified ground plane profile helps in optimizing the proximity fed antennas on lower substrate thicknesses. Amongst all the configurations, for ~0.03λg reduction in the substrate thickness, SMSA using bow-tie shape ground plane yields 19% increase in the impedance bandwidth against the equivalent thicker substrate design with a peak broadside gain of above 6 dBi. Thus, proposed modified ground plane antennas yields bandwidth improvement but for a smaller substrate thickness.
Citation
Venkata A. P. Chavali, and Amit A. Deshmukh, "Wideband Designs of Regular Shape Microstrip Antennas Using Modified Ground Plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2021.
doi:10.2528/PIERC21110202
References

1. Kuma, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

2. Vandenbosch, G. A. E. and A. R. Van de Capelle, "Study of the capacitively fed microstrip antenna element," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 12, 1648-1652, December 1994.
doi:10.1109/8.362807

3. Cheng, Cheng, Z. Du, and D. Huang, "A differentially fed broadband multimode microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 771-775, March 2020.
doi:10.1109/LAWP.2020.2979492

4. Yoo, J. U. and H. W. Son, "A simple compact wideband microstrip antenna consisting of three staggered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2038-2042, September 2020.
doi:10.1109/LAWP.2020.3021491

5. Yang, D., H. Zhai, C. Guo, and H. Li, "A compact single-layer wideband microstrip antenna with filtering performance," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 801-805, March 2020.
doi:10.1109/LAWP.2020.2980631

6. Radavaram, S. and M. Pour, "Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-Slots," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1501-1508, December 2018.
doi:10.1109/TAP.2018.2885433

7. Guo, Y. X., K. M. Luk, K. F. Lee, and Y. L. Chow, "Double U-slot rectangular patch antenna," Electronics Letters, Vol. 34, No. 19, 1805-1806, September 1998.
doi:10.1049/el:19981283

8. Zhang, X., K. D. Hong, L. Zhu, X. K. Bi, and T. Yuan, "Wideband differentially-fed patch antennas under dual high-order modes for stable high gain," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 1-5, July 2020.

9. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "Butter fly shape compact microstrip antenna for wideband applications," Progress In Electromagnetics Research Letters, Vol. 69, 45-50, 2017.
doi:10.2528/PIERL17042703

10. Wu, Z. F., W. J. Lu, J. Yu, and L. Zhu, "Wideband null frequency scanning circular sector patch antenna under triple resonance," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7266-7274, May 2020.
doi:10.1109/TAP.2020.2995459

11. Lu, W. J., Q. Li, S. G. Wang, and L. Zhu, "Design approach to a novel dual-mode wideband circular sector patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 4980-4990, July 2017.
doi:10.1109/TAP.2017.2734073

12. Mandal, K. and P. P. Sarkar, "High gain wide-band U-shaped patch antennas with modified ground planes," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2279-2282, January 2013.
doi:10.1109/TAP.2012.2233455

13. Mondal, K. and P. P. Sarkar, "Half hexagonal broadband high gain microstrip patch antenna for mobile and radar applications," Microwave and Optical Technology Letters, Vol. 58, No. 5, 1028-1032, May 2016.
doi:10.1002/mop.29726

14. Mondal, K. and P. P. Sarkar, "M-shaped broadband microstrip patch antenna with modified ground plane," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1308-1312, June 2015.
doi:10.1002/mop.29068

15. Bhatia, S. S., A. Sahni, and S. B. Rana, "A novel design of compact monopole antenna with defected ground plane for wideband applications," Progress In Electromagnetics Research M, Vol. 70, 21-31, 2018.
doi:10.2528/PIERM18050201

16. IE3D Software, Version 12.

17. Kadam, P. A. and A. A. Deshmukh, "Modified ground plane multi-band rectangular microstrip antennas with reduced cross polar radiation," Progress In Electromagnetics Research C, Vol. 100, 59-71, 2020.
doi:10.2528/PIERC19122202

18. Kadam, P. A. and A. A. Deshmukh, "Designs of regular shape microstrip antennas backed by bow-tie shape ground plane for enhanced antenna characteristics," AEU-International Journal of Electronics and Communications, Vol. 137, 1-9, 2021.

19. Jyoti Gogoi, P., D. Jyoti Gogoi, and N. S. Bhattacharyya, "Modified ground plane of patch antenna for broadband applications in C-band," Microwave and Optical Technology Letters, Vol. 58, No. 5, 1074-1078, May 2016.
doi:10.1002/mop.29724

20. Kandwal, A., R. Sharma, and S. K. Kumar, "Bandwidth enhancement using Z-shaped defected ground structure for a microstrip antenna," Microwave and Optical Technology Letters, Vol. 55, No. 10, 2251-2254, October 2013.
doi:10.1002/mop.27836

21. Wong, K. L., C. L. Tang, and J. Y. Chiou, "Broadband probe-fed patch antenna with a W-shaped ground plane," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 6, 827-831, August 2002.
doi:10.1109/TAP.2002.1017663

22. Hsu, W. H. and K. L. Wong, "Broadband probe-fed patch antenna with a U-shaped ground plane for cross-polarization reduction," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 3, 352-355, August 2002.
doi:10.1109/8.999626

23. Huang, J., "The finite ground plane effects on the microstrip antenna radiation patterns," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 4, 649-653, July 1983.
doi:10.1109/TAP.1983.1143108

24. Noghanian, S. and L. Shafai, "Control of microstrip antenna radiation characteristics by ground plane size and shape," IEE Proceedings Microwave Antennas and Propagation, Vol. 145, No. 3, 207-212, June 1998.
doi:10.1049/ip-map:19981819

25. Rajo-Iglesias, E., L. Inclán-Sánchez, and Ó. Quevedo-Teruel, "Back radiation reduction in patch antennas using planar soft surfaces," Progress In Electromagnetics Research Letters, Vol. 6, 123-130, 2009.
doi:10.2528/PIERL08111202

26. Lee, H. M. and W. S Choi, "Effect of partial ground plane removal on the radiation characteristics of a microstrip antenna," Wireless Engineering and Technology, Vol. 4, 5-12, 2013.
doi:10.4236/wet.2013.41002

27. Alias, H., M. T. Ali, S. Subahir N. Ramli, M. A. Sulaiman, and S. Kayat, "A back lobe reduction of aperture coupled microstrip antenna using DGS," Proceedings of 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information, Thailand, May 15-17, 2013, DOI: 10.1109/ECTICon.2013.6559514.

28. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850

29. Oka, N. C. M., T. Uchida, and S. Nitta, "Influence of ground plane width on reduction of radiated emission from printed circuit boards," Electronics and Communications in Japan, Part 2, Vol. 84, No. 1, 21-31, 2001.
doi:10.1002/1520-6432(200101)84:1<21::AID-ECJB3>3.0.CO;2-P

30. Watanabe, T., O. Wada, T. Miyashita, and R. Koga, "Common mode current generation caused by difference of unbalance of transmission lines on a printed circuit board with narrow ground pattern," IEICE Trans. Communication, Vol. E83-B, No. 3, 593-599, March 2000.