1. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/ACCESS.2013.2260813.
doi:10.1109/ACCESS.2013.2260813
2. Abumunshar, A. J., K. Sertel, and N. K. Nahar, "Millimeter-wave tightly-coupled phased array with integrated MEMS phase shifters," Progress In Electromagnetics Research C, Vol. 110, 135-150, 2021.
doi:10.2528/PIERC20113004
3. Dadgarpour, B. Z., B. S. Virdee, and T. A. Denidni, "Beam tilting antenna using integrated metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2874-2879, May 2014, doi: 10.1109/TAP.2014.2308516.
doi:10.1109/TAP.2014.2308516
4. Mantash, M., A. Kesavan, and T. A. Denidni, "Beam-tilting endfire antenna using a single-layer FSS for 5G communication networks," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 29-33, Jan. 2018, doi: 10.1109/LAWP.2017.2772222.
doi:10.1109/LAWP.2017.2772222
5. Dale Ake, W., M. Pour, and A. Mehrabani, "Asymmetric half-bowtie antennas with tilted beam patterns," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 738-744, Feb. 2019, doi: 10.1109/TAP.2018.2880078.
doi:10.1109/TAP.2018.2880078
6. Mosca, S., F. Bilotti, A. Toscano, and L. Vegni, "A novel design method for Blass matrix beam-forming networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 225-232, Feb. 2002, doi: 10.1109/8.997999.
doi:10.1109/8.997999
7. Fakoukakis, F. and G. Kyriacou, "Novel nolen matrix based beamforming networks for series-fed low SLL multibeam antennas," Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013.
doi:10.2528/PIERB13011605
8. Rahimian, A., Y. Alfadhl, and A. Alomainy, "Design and performance analysis of millimetre-wave Rotman lens-based array beamforming networks for large-scale antenna subsystems," Progress In Electromagnetics Research C, Vol. 78, 159-171, 2017.
doi:10.2528/PIERC17071703
9. Lian, J., Y. Ban, Z. Chen, B. Fu, and C. Xiao, "SIW folded Cassegrain lens for millimeter-wave multibeam application," IEEE Antennas and Wireless Propagation Letters, Vol. 7, No. 4, 583-586, Apr. 2018, doi: 10.1109/LAWP.2018.2804923.
doi:10.1109/LAWP.2018.2804923
10. Butler, J. and R. Lowe, "Beam-forming matrix simplifies design of electronically scanned antennas," Electronic Design, Vol. 9, 170-173, Apr. 12, 1961.
11. Panduro, M. A. and C. del Rio-Bocio, "Simplifying the feeding network for multibeam circular antenna arrays by using corps," Progress In Electromagnetics Research Letters, Vol. 21, 119-128, 2011.
doi:10.2528/PIERL11010205
12. Panduro, M. A. and C. del Ro-Bocio, "Design of beam-forming networks using CORPS and evolutionary optimization," International Journal of Electronics and Communications, Vol. 63, No. 5, 353-365, 2009, doi: 10.1016/j.aeue.2008.02.009.
doi:10.1016/j.aeue.2008.02.009
13. Panduro, M. A. and C. del Río-Bocio, "Design of beam-forming networks for scannable multi-beam antenna arrays using CORPS," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
doi:10.2528/PIER08070403
14. Juárez, E., M. A. Panduro, A. Reyna, D. H. Covarrubias, A. Mendez, and E. Murillo, "Design of concentric ring antenna arrays based on subarrays to simplify the feeding system," Symmetry, Vol. 12, No. 6, 970, Jun. 2020, https://doi.org/10.3390/sym12060970.
doi:10.3390/sym12060970
15. Tseng, C., C. Chen, and T. Chu, "A low-cost 60-GHz switched-beam patch antenna array with butler matrix network," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 432-435, 2008, doi: 10.1109/LAWP.2008.2001849.
doi:10.1109/LAWP.2008.2001849
16. Karamzadeh, S., V. Rafiei, and M. Kartal, "Beam steering fabry perot array antenna for MM-wave application," Progress In Electromagnetics Research M, Vol. 91, 81-89, 2020.
doi:10.2528/PIERM20020101
17. Ashraf, N., A.-R. Sebak, and A. A. Kishk, "PMC packaged single-substrate 4 × 4 butler matrix and double-ridge gap waveguide horn antenna array for multibeam applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 248-261, Jan. 2021, doi: 10.1109/TMTT.2020.3022092.
doi:10.1109/TMTT.2020.3022092
18. Trinh-Van, S., J. M. Lee, Y. Yang, K. Lee, and K. C. Hwang, "A sidelobe-reduced, four-beam array antenna fed by a modified 4 × 4 butler matrix for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4528-4536, Jul. 2019, doi: 10.1109/TAP.2019.2905783.
doi:10.1109/TAP.2019.2905783
19. Lian, J., Y. Ban, C. Xiao, and Z. Yu, "Compact substrate-integrated 4 × 8 butler matrix with sidelobe suppression for millimeter-wave multibeam application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 928-932, May 2018, doi: 10.1109/LAWP.2018.2825367.
doi:10.1109/LAWP.2018.2825367
20. Cao, Y., K. Chin, W. Che, W. Yang, and E. S. Li, "A compact 38 GHz multibeam antenna array with multifolded butler matrix for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2996-2999, 2017, doi: 10.1109/LAWP.2017.2757045.
doi:10.1109/LAWP.2017.2757045
21. Balanis, C. A., Antenna Theory --- Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.