Vol. 117
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-01-07
Millimeter Wave Switched Beam Rectangular Loop Dipole Antenna Array Using a 4×4 Butler Matrix
By
Progress In Electromagnetics Research C, Vol. 117, 251-260, 2021
Abstract
A four-stage switched beam antenna array at millimeter-wave (mm-wave) frequencies is designed, fabricated, and experimental results are demonstrated. A novel rectangular loop dipole antenna (RLDA) applying the quasi Yagi-Uda concept is designed to achieve high gain and wide bandwidth with end-fire radiation. This RLDA with director has a return loss better than 10 dB over a frequency range of 32 GHz to 37 GHz and a peak gain of 8.5 dB. The proposed high gain end-fire RLDA antenna in combination with a 4x4 Butler Matrix(BM) creates the switched beam configuration and generates four beams in the directions of 15˚±2˚, -45˚±4˚, 38˚±2˚, and -15˚±1˚ at 33.5 GHz, 34.5 GHz, and 35.5 GHz with successive input port excitation. The switched beam configuration has overall dimensions at 34.5 GHz is 26 mm x 25.8 mm (3.03λ x 3.0λ).
Citation
Kunooru Bharath, Srujana Vahini Nandigama, Dasari Ramakrishna, Mahesh Pandurang Abegaonkar, and Vijay M. Pandharipande, "Millimeter Wave Switched Beam Rectangular Loop Dipole Antenna Array Using a 4×4 Butler Matrix," Progress In Electromagnetics Research C, Vol. 117, 251-260, 2021.
doi:10.2528/PIERC21103003
References

1. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/ACCESS.2013.2260813.
doi:10.1109/ACCESS.2013.2260813

2. Abumunshar, A. J., K. Sertel, and N. K. Nahar, "Millimeter-wave tightly-coupled phased array with integrated MEMS phase shifters," Progress In Electromagnetics Research C, Vol. 110, 135-150, 2021.
doi:10.2528/PIERC20113004

3. Dadgarpour, B. Z., B. S. Virdee, and T. A. Denidni, "Beam tilting antenna using integrated metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2874-2879, May 2014, doi: 10.1109/TAP.2014.2308516.
doi:10.1109/TAP.2014.2308516

4. Mantash, M., A. Kesavan, and T. A. Denidni, "Beam-tilting endfire antenna using a single-layer FSS for 5G communication networks," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 29-33, Jan. 2018, doi: 10.1109/LAWP.2017.2772222.
doi:10.1109/LAWP.2017.2772222

5. Dale Ake, W., M. Pour, and A. Mehrabani, "Asymmetric half-bowtie antennas with tilted beam patterns," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 738-744, Feb. 2019, doi: 10.1109/TAP.2018.2880078.
doi:10.1109/TAP.2018.2880078

6. Mosca, S., F. Bilotti, A. Toscano, and L. Vegni, "A novel design method for Blass matrix beam-forming networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 225-232, Feb. 2002, doi: 10.1109/8.997999.
doi:10.1109/8.997999

7. Fakoukakis, F. and G. Kyriacou, "Novel nolen matrix based beamforming networks for series-fed low SLL multibeam antennas," Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013.
doi:10.2528/PIERB13011605

8. Rahimian, A., Y. Alfadhl, and A. Alomainy, "Design and performance analysis of millimetre-wave Rotman lens-based array beamforming networks for large-scale antenna subsystems," Progress In Electromagnetics Research C, Vol. 78, 159-171, 2017.
doi:10.2528/PIERC17071703

9. Lian, J., Y. Ban, Z. Chen, B. Fu, and C. Xiao, "SIW folded Cassegrain lens for millimeter-wave multibeam application," IEEE Antennas and Wireless Propagation Letters, Vol. 7, No. 4, 583-586, Apr. 2018, doi: 10.1109/LAWP.2018.2804923.
doi:10.1109/LAWP.2018.2804923

10. Butler, J. and R. Lowe, "Beam-forming matrix simplifies design of electronically scanned antennas," Electronic Design, Vol. 9, 170-173, Apr. 12, 1961.

11. Panduro, M. A. and C. del Rio-Bocio, "Simplifying the feeding network for multibeam circular antenna arrays by using corps," Progress In Electromagnetics Research Letters, Vol. 21, 119-128, 2011.
doi:10.2528/PIERL11010205

12. Panduro, M. A. and C. del Ro-Bocio, "Design of beam-forming networks using CORPS and evolutionary optimization," International Journal of Electronics and Communications, Vol. 63, No. 5, 353-365, 2009, doi: 10.1016/j.aeue.2008.02.009.
doi:10.1016/j.aeue.2008.02.009

13. Panduro, M. A. and C. del Río-Bocio, "Design of beam-forming networks for scannable multi-beam antenna arrays using CORPS," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
doi:10.2528/PIER08070403

14. Juárez, E., M. A. Panduro, A. Reyna, D. H. Covarrubias, A. Mendez, and E. Murillo, "Design of concentric ring antenna arrays based on subarrays to simplify the feeding system," Symmetry, Vol. 12, No. 6, 970, Jun. 2020, https://doi.org/10.3390/sym12060970.
doi:10.3390/sym12060970

15. Tseng, C., C. Chen, and T. Chu, "A low-cost 60-GHz switched-beam patch antenna array with butler matrix network," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 432-435, 2008, doi: 10.1109/LAWP.2008.2001849.
doi:10.1109/LAWP.2008.2001849

16. Karamzadeh, S., V. Rafiei, and M. Kartal, "Beam steering fabry perot array antenna for MM-wave application," Progress In Electromagnetics Research M, Vol. 91, 81-89, 2020.
doi:10.2528/PIERM20020101

17. Ashraf, N., A.-R. Sebak, and A. A. Kishk, "PMC packaged single-substrate 4 × 4 butler matrix and double-ridge gap waveguide horn antenna array for multibeam applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 248-261, Jan. 2021, doi: 10.1109/TMTT.2020.3022092.
doi:10.1109/TMTT.2020.3022092

18. Trinh-Van, S., J. M. Lee, Y. Yang, K. Lee, and K. C. Hwang, "A sidelobe-reduced, four-beam array antenna fed by a modified 4 × 4 butler matrix for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4528-4536, Jul. 2019, doi: 10.1109/TAP.2019.2905783.
doi:10.1109/TAP.2019.2905783

19. Lian, J., Y. Ban, C. Xiao, and Z. Yu, "Compact substrate-integrated 4 × 8 butler matrix with sidelobe suppression for millimeter-wave multibeam application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 928-932, May 2018, doi: 10.1109/LAWP.2018.2825367.
doi:10.1109/LAWP.2018.2825367

20. Cao, Y., K. Chin, W. Che, W. Yang, and E. S. Li, "A compact 38 GHz multibeam antenna array with multifolded butler matrix for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2996-2999, 2017, doi: 10.1109/LAWP.2017.2757045.
doi:10.1109/LAWP.2017.2757045

21. Balanis, C. A., Antenna Theory --- Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.