Vol. 117
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-12-17
Accurate Fault Location for Long-Distance Electric Transmission Lines
By
Progress In Electromagnetics Research C, Vol. 117, 41-54, 2021
Abstract
This paper, using the distributed parameter line model, presents an accurate fault location method based on fundamental frequency positive sequence fault components for EHV transmission line. The method based on positive sequence fault components Extra-High Voltage (EHV) electric transmission line. The method based on the positive sequence fault component is robust to the operating state of the prefault system and fault path resistance. The technique proposed in the paper does not require the fault type, fault phase, and the zero-sequence parameter to be obtained in advance. In addition, due to the use of fault component protection theory, the algorithm itself is not a ected by the previous operating state of the system. The method uses a distributed parameter model, which is more accurate in positioning and smaller in error than a lumped parameter model by a large number of simulations. Accurate fault location is important for shortening the fault time and reducing the loss of the fault, so the positioning method proposed can improve the power supply quality and safety. This paper describes the characteristics of the proposed technique and assesses its performance by using Power Systems Computer Aided Design/Electromagnetic Transients including DC (PSCAD/EMTDC).
Citation
Lihui Zhao, Jingwei Zhu, Hongzhe Yang, and Tianhuai Qiao, "Accurate Fault Location for Long-Distance Electric Transmission Lines," Progress In Electromagnetics Research C, Vol. 117, 41-54, 2021.
doi:10.2528/PIERC21092906
References

1. Phadke, A. G., M. Izumi, M. Yokoyama, K. Umemoto, T. Hlibka, and M. Ibrahim, "Fundamental basis for distance relaying with symmetrical components," IEEE Trans. Power App. Syst., Vol. 96, No. 3, 635-646, 1977.
doi:10.1109/T-PAS.1977.32375

2. Kezunovic, M. and B. Perunicic, "Automated transmission line fault analysis using synchronized sampling at two end," IEEE Trans. Power Del., Vol. 11, No. 1, 121-129, 1988.

3. Takagi, T., Y. Yamakoshi, J. Baba, K. Uemura, and T. Sakaguchi, "A new algorithm of an accurate fault location for EHV/UHV transmission lines: PART I -- Fourier transformation method," IEEE Trans. Power App. Syst., Vol. 3, No. 3, 1316-1323, 1981.
doi:10.1109/TPAS.1981.316604

4. Lopes, F., K. M. Dantas, K. M. Silva, and F. B. Costa, "Accurate two-terminal transmission line fault location using traveling waves," IEEE Trans. Power Del., Vol. 33, No. 2, 873-880, 2018.
doi:10.1109/TPWRD.2017.2711262

5. Liao, Y. and S. Elangovan, "Improved symmetrical component-based fault distance estimation for digital distance protection," IEE Proc. Gener. Transm. Distrib., Vol. 145, No. 6, 739-746, 1998.
doi:10.1049/ip-gtd:19982366

6. Apostolopoulos, C. A. and G. N. Korres, "A novel algorithm for locating faults on transposed/untransposed transmission lines without utilizing line parameters," IEEE Trans. Power Del., Vol. 6, No. 2, 2328-2338, 2010.
doi:10.1109/TPWRD.2010.2053223

7. Kawady, T. and J. Stenzel, "A practical fault location approach for double circuit transmission lines using single end data," IEEE Trans. Power Del., Vol. 18, No. 4, 1166-1173, 2003.
doi:10.1109/TPWRD.2003.817503

8. Livani, H. and C. Y. Evrenosoglu, "A machine learning and wavelet-based fault location method for hybrid transmission lines," IEEE Trans. Smart Grid, Vol. 5, No. 1, 51-58, 2014.
doi:10.1109/TSG.2013.2260421

9. Terzija, V., Z. M. Radojevic, and G. Preston, "Flexible synchronized measurement technology-based fault locator," IEEE Trans. Smart Grid, Vol. 6, No. 2, 866-873, 2015.
doi:10.1109/TSG.2014.2367820

10. Elsadd, M. A. and A. Y. Abdelaziz, "Unsynchronized fault-location technique for two- and three-terminal transmission lines," Electric Power Systems Research, Vol. 158, 228-239, 2018.
doi:10.1016/j.epsr.2018.01.010

11. Elkalashy, N., T. A. Kawady, W. M. Khater, and A. M. I. Taalab, "Unsynchronized fault-location technique for double-circuit transmission systems independent of line parameters," IEEE Trans. Power Del., Vol. 99, No. 4, 1591-1599, 2015.
doi:10.1109/TPWRD.2015.2472638

12. Zhang, Y., J. Liang, Z. H. Yun, and X. M. Dong, "A new fault-location algorithm for series-compensated double-circuit transmission lines based on the distributed parameter model," IEEE Trans. Power Del., Vol. 33, No. 6, 3249-3251, 2018.
doi:10.1109/TPWRD.2018.2838344

13. Xu, Z., Z. Q. Du, L. Ran, Y. K. Wu, and Q. X. Yang, "A current differential relay for a 1000-kV UHV transmission line," IEEE Trans. Power Del., Vol. 19, No. 4, 1392-1399, 2007.
doi:10.1109/TPWRD.2007.900274

14. Lin, Y., C. W. Liu, and C. S. Chen, "A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination --- Part I: Theory and algorithms," IEEE Trans. Smart Grid, Vol. 19, No. 4, 1588-1593, 2004.

15. Lee, Y., C. H. Chao, T. C. Lin, and C. W. Liu, "synchro phasor-based fault location method for three-terminal hybrid transmission lines with one off-service line branch," IEEE Trans. Power Del., Vol. 33, No. 6, 3249-3251, 2018.
doi:10.1109/TPWRD.2018.2840958

16. Terzija, V., Z. M. Radojevic, and G. Preston, "Flexible synchronized measurement technology-based fault locator," IEEE Trans. Smart Grid, Vol. 6, No. 2, 866-873, 2015.
doi:10.1109/TSG.2014.2367820

17. Zhao, L., J. W. Zhu, and B. Gu, "A new technique based on fundamental frequency positive sequence fault components for fault location," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 15, 536-543, 2020.
doi:10.1002/tee.23086