Vol. 116
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-11-20
A Novel Dual-Band Printed SIW Antenna Design Based on Fishnet & Ccrr DGS Using Machine Learning for Ku-Band Applications
By
Progress In Electromagnetics Research C, Vol. 116, 207-219, 2021
Abstract
This paper analyzes and solves the complexity to determine the optimum positions of the Fishnet & Complementary Circular Ring Resonator (CCRR) based Defected Ground Structures (DGS) for Substrate Integrated Waveguide (SIW) based antennas. A new state-of-art technique based on Artificial Neural Network (ANN)-Machine Learning (ML) is proposed for overcoming the lack of solid and standard formulations for the computation of this parameter related to a targeted frequency. As a proof of concept and to test the performance of our approach, the algorithm is applied for the determination of the CCRR and Fishnet-DGS's optimal positions for a SIW based antenna. The SIW technique provides the advantages of low cost, small size and convenient integration with planar circuits. The ANN-ML based technique is optimized to attain dual-band resonances with optimal gain and radiation efficiency. The simulation results of the first Fishnet-DGS based antenna show good minimum return losses at two center frequencies, namely, 16.6 GHz (with gain of 6 dB and radiation efficiency of 95%) and 17.7 GHz (with gain and radiation efficiency of 9 dB and 96%, respectively). The second CCRR-DGS based antenna shows about 8\,dB gain and a radiation efficiency of 87% at 17.3 GHz, and gain and efficiency of about 8.5 dB and 85% are observed at 17.8 GHz. The proposed CCRR and Fishnet-DGS based antenna are low profiles, low costs, with good gains and radiation efficiencies, making both designs very suitable for Ku-band applications. There is a fair agreement between the measured and simulated results. The achieved dual-band resonances act as a proof of concept that the proposed ANN-ML techniques can be employed for the determination of the optimal positions for CCRR and Fishnet thereby attaining any target dual-bands in the Ku-band with good accuracy of about 98% and a save of 99% in the overall the computational time.
Citation
Mohammed Farouk Nakmouche, Muhammad Idrees Magray, Abdemegeed Mahmoud Allam, Diaa E. Fawzy, Ding-Bing Lin, and Jenn-Hwen Tarng, "A Novel Dual-Band Printed SIW Antenna Design Based on Fishnet & Ccrr DGS Using Machine Learning for Ku-Band Applications," Progress In Electromagnetics Research C, Vol. 116, 207-219, 2021.
doi:10.2528/PIERC21092703
References

1. Madhav, B. T. P., M. Manjeera, M. S. Navya, D. S. Devi, and V. Sumanth, "Novel metamaterial loaded multiband patch antenna," Indian J. Sci. Technol., Vol. 9, No. 38, 2016.

2. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," Int. J. Antennas Propag., Vol. 2017, 2017.

3. Ahsan, M. R., M. T. Islam, M. H. Ullah, R. W. Aldhaheri, and M. M. Sheikh, "A new design approach for dual-band patch antenna serving Ku/K band satellite communications," Int. J. Satell. Commun. Network, Vol. 34, 759-769, 2016.
doi:10.1002/sat.1130

4. Ullah, M. H., M. T. Islam, M. R. Ahsan, J. S. Mandeep, and N. Misran, "A dual band slotted patch antenna on dielectric material substrate," Int. J. Antennas Propag., Vol. 2014, 2014.

5. Saini, G. S. and R. Kumar, "A low profile patch antenna for Ku-band applications," Int. J. Electron. Lett., Vol. 00, No. 00, 1-11, 2019.

6. Ahsan, M. R., M. T. Islam, and M. H. Ullah, "A simple design of planar microstrip antenna on composite material substrate for Ku/K band satellite applications," Int. J. Commun. Syst., Vol. 30, e2970, 2017.
doi:10.1002/dac.2970

7. Da Silva, I. B. T., H. D. de Andrade, J. L. da Silva, H. C. C. Fernandes, and J. P. P. Pereira, "Design of microstrip patch antenna with complementary split ring resonator device for wideband systems application," Microw. Opt. Technol. Lett., Vol. 57, 1326-1330, 2015.
doi:10.1002/mop.29081

8. Nakmouche, M. F., D. E. Fawzy, A. M. M. A. Allam, H. Taher, and M. F. A. Sree, "Dual band SIW patch antenna based on H-slotted DGS for Ku band application," 2020 7th Int. Conf. Electr. Electron. Eng. ICEEE 2020, 194-197, 2020.

9. Roy, S. and U. Chakraborty, "Metamaterial-embedded dual wideband microstrip antenna for 2.4 GHz WLAN and 8.2 GHz ITU band applications," Waves in Random and Complex Media, Vol. 30, No. 2, 193-207, 2020.
doi:10.1080/17455030.2018.1494396

10. Zhang, H. T., G. Q. Luo, B. Yuan, and X. H. Zhang, "A novel ultra-wideband metamaterial antenna using chessboard-shaped patch," Microw. Opt. Technol. Lett., Vol. 58, 3008-3012, 2016.
doi:10.1002/mop.30200

11. Rajak, N., N. Chattoraj, and R. Mark, "Metamaterial cell inspired high gain multiband antenna for wireless applications," AEU --- Int. J. Electron. Commun., Vol. 109, 23-30, 2019.
doi:10.1016/j.aeue.2019.07.003

12. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
doi:10.2528/PIERC18012905

13. Kumar, P., T. Ali, and M. M. M. Pai, "Electromagnetic metamaterials: A new paradigm of antenna design," IEEE Access, Vol. 9, 2021.

14. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489

15. Liu, Y., X. Yang, Y. Jia, and Y. J. Guo, "A low correlation and mutual coupling MIMO antenna," IEEE Access, Vol. 7, 127384-127392, 2019.
doi:10.1109/ACCESS.2019.2939270

16. Ozdemir, E., O. Akgol, F. O. Alkurt, M. Karaaslan, Y. I. Abdulkarim, and L. Deng, "Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach," Appl. Sci., Vol. 10, No. 1, 2020.
doi:10.3390/app10010378

17. Nakmouche, M. F., A. M. Allam, D. E. Fawzy, and D.-B. Lin, "Development of a high gain fss re ector backed monopole antenna using machine learning for 5G applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.
doi:10.2528/PIERM21083103

18. Khan, T. and C. Roy, "Prediction of slot-position and slot-size of a microstrip antenna using support vector regression," Int. J. RF Microw Comput. Aided Eng., 2019.

19. Kumar, R., P. Kumar, S. Singh, and R. Vijay, "Fast and accurate synthesis of frequency reconfigurable slot antenna using back propagation network," AEU --- Int. J. Electron. Commun., Vol. 112, 152962, 2019.
doi:10.1016/j.aeue.2019.152962

20. Sabanci, K., A. Kayabasi, A. Toktas, and E. Yigit, "Notch antenna analysis: Artificial neural network-based operating frequency estimator," Appl. Comput. Electromagn. Soc. J., Vol. 32, No. 4, 303-309, 2017.

21. Aoad, A., "Design and manufacture of a multiband rectangular spiral-shaped microstrip antenna using EM-driven and machine learning," Elektron. ir Elektrotechnika, Vol. 27, No. 1, 29-40, 2021.
doi:10.5755/j02.eie.27583

22. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, D. B. Lin, M. Fathy, and A. Sree, "Development of H-slotted DGS based dual band antenna using ANN for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021.

23. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ANN for K/Ku band applications," 2021 8th Int. Conf. Electr. Electron. Eng. ICEEE, 2021.

24. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas Propag., Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

25. Nakmouche, M. F., H. Taher, D. E. Fawzy, and G. Kahraman, "Parametric study of different shapes-slotted substrate integrated waveguide for wideband applications," Mediterr. Microw. Symp., 251-254, 2019.

26. Nakmouche, M. F., H. Taher, D. E. Fawzy, and A. M. M. A. Allam, "Development of a wideband substrate integrated waveguide bandpass filter using H-slotted DGS," Proceedings --- CAMA 2019: IEEE International Conference on Antenna Measurements and Applications, 2019.

27. Feng, S., L. Zhang, H. W. Yu, Y. X. Zhang, and Y. C. Jiao, "A single-layer wideband differential-fed microstrip patch antenna with complementary split-ring resonators loaded," IEEE Access, Vol. 7, 132041-132048, 2019.
doi:10.1109/ACCESS.2019.2940279

28. Tao, L., et al. "Bandwidth enhancement of microstrip patch antenna using complementary rhombus resonator," Wirel. Commun. Mob. Comput., Vol. 2018, 2018.

29. Jilani, S. F. and A. Alomainy, "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microwaves, Antennas Propag., Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467

30. Patel, R., A. Desai, T. Upadhyaya, T. K. Nguyen, H. Kaushal, and V. Dhasarathan, "Meandered low profile multiband antenna for wireless communication applications," Wirel. Networks, Vol. 27, No. 1, 1-12, 2021.
doi:10.1007/s11276-020-02437-6

31. Gopi, D., A. R. Vadaboyina, and J. R. K. K. Dabbakuti, "DGS based monopole circular-shaped patch antenna for UWB applications," SN Appl. Sci., Vol. 3, No. 2, 2021.
doi:10.1007/s42452-020-04123-w

32. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, No. 12, 1783-1786, 2016.
doi:10.1109/LAWP.2016.2536678

33. Xu, Z., Q. Zhang, and L. Guo, "A compact 5G decoupling MIMO antenna based on split-ring resonators," Int. J. Antennas Propag., Vol. 2019, 2019.

34. Nakmouche, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IoT terminals design," Proceedings --- 2019 6th International Conference on Image and Signal Processing and their Applications, ISPA 2019, 2019.

35. Kumar, A., R. Patel, and M. V. Kartikeyan, "Investigation on microstrip filters with CSRR defected ground structure," Adv. Electromagn., Vol. 5, No. 2, 28-33, 2016.
doi:10.7716/aem.v5i2.353

36. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., 2005.

37. Lokeshwar, B., D. Venkatasekhar, and A. Sudhakar, "Dual-band low profile siw cavity-backed antenna by using bilateral slots," Progress In Electromagnetics Research C, Vol. 100, 263-273, 2020.
doi:10.2528/PIERC20021201

38. Lokeshwar, B., D. Venkatasekhar, and J. Ravindranadh, "Development of a low-profile broadband cavity backed bow-tie shaped slot antenna in SIW technology," Progress In Electromagnetics Research Letter, Vol. 100, 9-17, 2021.
doi:10.2528/PIERL21072404