Vol. 117
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-12-20
Compact Differential Tri-Band Bandpass Filter with Multiple Zeros Using Sext-Mode Stepped-Impedance Square Ring Loaded Resonator
By
Progress In Electromagnetics Research C, Vol. 117, 73-87, 2021
Abstract
In this paper, a second-order tri-band balanced bandpass filter (BPF) with multiple transmission zeros (TZs) and compact size is presented. The structure consists of novel stepped impedance square ring loaded resonators (SI-SRLRs), which can excite six resonance modes. For design of SI-SRLR, we analysed the odd-mode equivalent circuit and obtained the electrical lengths from the design graph. Meanwhile, the wider frequency distances between differential modes (DMs) and common modes (CMs) are realized by selecting the proper admittance ratio of SI-SRLR. Then for design of BPF, six TZs are introduced by source-load coupling, which lead to band-to-band isolation of 23 dB. Additional T-shaped stubs and open stubs are loaded on the symmetric plane of SI-SRLR, which result in high CM suppressions of 43 dB, 25 dB and 37 dB at three DM centre frequencies. Finally, a tri-band differential BPF operating at 1.46 GHz, 4.45 GHz and 5.48 GHz is fabricated and measured. The measured 3-dB fractional bandwidths of three passbands are 6.8%, 7.4% and 5.6%. A wide DM and CM stopband suppression of 20 dB is achieved to 14.6 GHz (10f0). The measurements verify well the proposed structure and the design method.
Citation
Ziyue Guo, Li Tian Wang, Rong Guo, Yang Xiong, Ming He, Lu Ji, and Xu Zhang, "Compact Differential Tri-Band Bandpass Filter with Multiple Zeros Using Sext-Mode Stepped-Impedance Square Ring Loaded Resonator," Progress In Electromagnetics Research C, Vol. 117, 73-87, 2021.
doi:10.2528/PIERC21092404
References

1. Zhou, K., C. X. Zhou, and W. Wu, "Resonance characteristics of substrate-integrated rectangular cavity and their applications to dual-band and wide-stopband bandpass filters design," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1511-1524, 2017.
doi:10.1109/TMTT.2016.2645156

2. Rahman, M.-U., D.-S. Ko, and J.-D. Park, "A compact triband bandpass filter utilizing double mode resonator with 6 transmission zeros," Microwave and Optical Technology Letters, Vol. 60, No. 7, 1767-1771, 2018.
doi:10.1002/mop.31239

3. Ghaderi, A., A. Golestanifar, and F. Shama, "Design of a compact microstrip tunable dual-band bandpass filter," AEU --- International Journal of Electronics and Communications, Vol. 82, 391-396, 2017.
doi:10.1016/j.aeue.2017.10.002

4. Ma, M. M., Z. X. Tang, X. Cao, and T. Qian, "Tri-band cross-coupling bandpass filter with rectangular defected ground structure array," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 11, 1409-1415, 2018.
doi:10.1080/09205071.2018.1439407

5. Ghaderi, A., A. Golestanifar, and F. Shama, "Microstrip bandpass filters using coupled feed lines for third and fourth generation communications," AEU --- International Journal of Electronics and Communications, Vol. 86, 195-201, 2018.
doi:10.1016/j.aeue.2018.02.007

6. Moitra, S. and R. Dey, "Design of dual band and tri-band Bandpass Filter (BPF) with improved inter-band isolation using DGS integrated coupled microstrip lines structures," Wireless Personal Communications, Vol. 110, No. 4, 2019-2030, 2020.
doi:10.1007/s11277-019-06827-8

7. Gómez-García, R., L. Yang, J. Muñoz-Ferreras, and D. Psychogiou, "Single/Multi-band coupled- multi-line filtering section and its application to RF diplexers, bandpass/bandstop filters, and filtering couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 10, 3959-3972, 2019.
doi:10.1109/TMTT.2019.2933212

8. Simpson, D. and D. Psychogiou, "Multi-band differential bandpass filters with quasi-elliptic-type passbands and multi-transmission zero common-mode suppression," IEEE MTT-S International Microwave Symposium, 1027-1030, 2019.

9. Wu, X.-H., F.-Y. Wan, and J.-X. Ge, "Stub-loaded theory and its application to balanced dual- band bandpass filter design," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, 231-233, 2016.
doi:10.1109/LMWC.2016.2537045

10. Du, M. Z., J. X. Chen, and Y. J. Yang, "Balanced dual-band bandpass filter using stub-loaded stepped-impedance resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 16, 2056-2064, 2013.
doi:10.1080/09205071.2013.831740

11. Cui, H.-R., Y. Sun, S.-N.Wang, and Y.-L. Lu, "Dual-band differential bandpass filter using stepped impedance resonators," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, 468-473, 2015.
doi:10.1002/mmce.20892

12. Yang, Z. J., G. X. Xiao, F. Wei, B. Zhou, and B. Li, "A balanced dual-band bandpass filter with independently tunable differential-mode frequencies," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, e21295, 2018.
doi:10.1002/mmce.21295

13. Cho, Y.-H. and S.-W. Yun, "Design of balanced dual-band bandpass filters using asymmetrical coupled lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 8, 2814-2820, 2013.
doi:10.1109/TMTT.2013.2269051

14. Lee, C. H., C. I. G. Hsu, H. H. Chen, and Y.-S. Lin, "Balanced single- and dual-band BPFs using ring resonators," Progress In Electromagnetics Research, Vol. 116, 333-346, 2011.
doi:10.2528/PIER11033016

15. Huang, F., J.-P. Wang, J.-S. Hong, and W. Wu, "A new balanced-to-unbalanced filtering power divider with dual controllable passbands and enhanced in-band common-mode suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 2, 695-703, 2019.
doi:10.1109/TMTT.2018.2883100

16. Yang, Y., W.-W. Choi, K.-W. Tam, and L. Zhu, "Balanced dual-band bandpass filter with multiple transmission zeros using doubly short-ended resonator coupled line," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 7, 1-8, 2015.

17. Ren, B.-P., Z.-W. Ma, H.-W. Liu, X.-H. Guan, X.-L. Wang, P. Wen, and M. Ohira, "Differential dual-band superconducting bandpass filter using multimode square ring loaded resonators with controllable band widths," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 2, 726-737, 2019.
doi:10.1109/TMTT.2018.2882487

18. Wei, F., Y. J. Guo, P. Y. Qin, and X.-W. Shi, "Compact balanced dual- and tri-band bandpass filters based on stub loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 2, 76-78, 2015.
doi:10.1109/LMWC.2014.2370233

19. Zhang, S. X., Z. H. Chen, and Q. X. Chu, "Design of tri-band balanced bandpass filter with controllable frequencies and bandwidths," IEEE/MTT-S International Microwave Symposium, Honolulu, Hawaii, USA, 2017.

20. Zhang, S. X., L. L. Qiu, and Q. X. Chu, "Multiband balanced filters with controllable bandwidths based on slotline coupling feed," IEEE Microwave and Wireless Components Letters, Vol. 27, 974-976, 2017.
doi:10.1109/LMWC.2017.2750026

21. Ren, B.-P., Z.-W. Ma, H.-W. Liu, X.-H. Guan, P. Wen, C.-Y. Wang, and M. Ohira, "Balanced tri-band bandpass filter using sext-mode stepped-impedance square ring loaded resonators," IEICE Electronics Express, Vol. 15, No. 18, 1-6, 2018.
doi:10.1587/elex.15.20180670

22. Yang, Y., Z.-X. Wang, L. Xu, and Y.-X. Liu, "A balanced tri-band bandpass filter with high selectivity and controllable bandwidths," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, e21976, 2019.

23. Lee, C. H., C.-I.-G. Hsu, and C. C. Hsu, "Balanced dual-band BPF with stub-loaded SIRs for common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 2, 70-72, 2010.
doi:10.1109/LMWC.2009.2038433

24. Shen, Y.-J., H. Wang, W. Kang, and W. Wu, "Dual-band SIW differential bandpass filter with improved common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 2, 100-102, 2014.
doi:10.1109/LMWC.2014.2382683