Vol. 116
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-11-11
Machine Learning Approaches for Automated Stroke Detection, Segmentation, and Classification in Microwave Brain Imaging Systems
By
Progress In Electromagnetics Research C, Vol. 116, 193-205, 2021
Abstract
In this paper, an intracranial hemorrhage stroke detection and classification method using microwave imaging system (MIS) based on machine learning approaches is presented. To create a circular array-based MIS, sixteen elements of modified bowtie antennas around a multilayer head phantom with a spherical target with radius of 1 cm as an intracranial hemorrhage target are simulated in CST simulator. To obtain satisfied radiation characteristics in the desired frequency band of 0.5-5 GHz a suitable matching medium is designed. Initially, in the processing section, a confocal image-reconstructing method based on delay-and-sum (DAS) and delay-multiply-and-sum (DMAS) beam-forming algorithms is used. Then, reconstructed images are generated, which shows the applicability of the confocal method in detecting a spherical target in the range of 1 cm. Separating and categorizing targets is a challenging task due to the ambiguity in the extracted target from MIS. Thus, to distinguish between healthy and unhealthy brain tissues, a new compound machine learning technique, including filtering, edge-detection based segmentation, and applying K Means and fuzzy clustering techniques, which reveal intracranial hemorrhage area from reconstructed images is adopted. Simulated results are presented to validate the proposed method effectiveness for precisely localizing and classifying bleeding targets.
Citation
Majid Roohi, Jalil Mazloum, Mohammad-Ali Pourmina, and Behbod Ghalamkari, "Machine Learning Approaches for Automated Stroke Detection, Segmentation, and Classification in Microwave Brain Imaging Systems," Progress In Electromagnetics Research C, Vol. 116, 193-205, 2021.
doi:10.2528/PIERC21080404
References

1. Scapaticci, R., J. Tobon, G. Bellizzi, F. Vipiana, and L. Crocco, "Design and numerical characterization of a low-complexity microwave device for brain stroke monitoring," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7328-7338, Dec. 2018.
doi:10.1109/TAP.2018.2871266

2. Sohani, B., G. Tiberi, N. Ghavami, M. Ghavami, S. Dudley, and A. Rahimi, "Microwave imaging for stroke detection: Validation on head-mimicking phantom," 2019 PhotonIcs & Electromagnetics Research Symposium --- Spring (PIERS --- SPRING), 940-948, Rome, Italy, Jun. 17-20, 2019.

3. Wang, J., X. Jiang, L. Peng, X. Li, H. An, and B. Wen, "Detection of neural activity of brain functional site based on microwave scattering principle," IEEE Access, Vol. 7, 13468-13475, 2019.
doi:10.1109/ACCESS.2019.2894128

4. Ilja, M., A. Massa, D. Vrba, O. Fiser, M. Salucci, and J. Vrba, "Microwave tomography system for methodical testing of human brain stroke detection approaches," International Journal of Antennas and Propagation, 2019.

5. Santorelli, A., E. Porter, E. Kirshin, Y. J. Liu, and M. Popovic, "Investigation of classifiers for tumor detection with an experimental time domain breast screening system," Progress In Electromagnetics Research, Vol. 144, 45-57, 2014.
doi:10.2528/PIER13110709

6. Pokorny, T. and J. Tesarik, "Microwave stroke detection and classification using different methods from MATLAB's classification learner toolbox," 2019 European Microwave Conference in Central Europe (EuMCE), 500-503, IEEE, 2019.

7. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407

8. Rahama, Y. A., O. A. Aryani, U. A. Din, M. A. Awar, A. Zakaria, and N. Qaddoumi, "Novel microwave tomography system using a phased-array antenna," IEEE Trans. Microw. Theory Tech., Vol. 66, 5119-5128, 2018.

9. Franceschini, S., M. Ambrosanio, F. Baselice, and V. Pascazio, "Neural networks for inverse problems: The microwave imaging case," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, Mar. 2021.

10. Bevacqua, M. T., S. Di Meo, L. Crocco, T. Isernia, G. Matrone, and M. Pasian, "A quantitative approach for millimeter-wave breast cancer imaging," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, Mar. 2021.

11. Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, "Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network," Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
doi:10.1016/j.bspc.2006.05.002

12. Rana, S. P., M. Dey, G. Tiberi, L. Sani, A. Vispa, G. Raspa, M. Duranti, M. Ghavami, and S. Dudley, "Machine learning approaches for automated lesion detection in microwave breast imaging clinical data," Sci. Rep., Vol. 9, 1-12, 2019.
doi:10.1038/s41598-019-46974-3

13. Dachena, C., A. Fedeli, A. Fanti, M. B. Lodi, M. Pastorino, and A. Randazzo, "A microwave imaging technique for neck diseases monitoring," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, Mar. 2021.

14. Ojaroudi, M., S. Bila, and M. Salimitorkamani, "A novel machine learning approach of hemorrhage stroke detection in differential microwave head imaging system," 2020 European Conference on Antennas and Propagation, 2020.

15. Nanni, L., S. Ghidoni, and S. Brahnam, "Handcrafted vs. non-handcrafted features for computer vision classification," Pattern Recognition, Vol. 71, 158-172, 2017, ISSN 0031-3203.
doi:10.1016/j.patcog.2017.05.025

16. CST Microwave Studio. ver. 2016, CST, , Framingham, MA, USA, 2016.

17. Li, X., M. Jalilvand, Y. L. Sit, and T. Zwick, "A compact double-layer on-body matched bowtie antenna for medical diagnosis," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1808-1816, 2014.
doi:10.1109/TAP.2013.2297158

18. Jalilvand, M., X. Li, J. Kowalewski, and T. Zwick, "Broadband miniaturised bow-tie antenna for 3D microwave tomography," Electronics Letters, Vol. 50, No. 4, 244-246, 2014.
doi:10.1049/el.2013.3974

19. Jamlos, M. A., W. A. Mustafa, N. Husna, S. Z. Syed Idrus, W. Khairunizam, I. Zunaidi, Z. M. Razlan, and A. B. Shahriman, "Ultra-wideband confocal microwave imaging for brain tumor detection," IOP Conference Series: Materials Science and Engineering, Vol. 557, No. 1, 012002, IOP Publishing, 2019.
doi:10.1088/1757-899X/557/1/012002

20. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 7, 1667-1682, 2015.
doi:10.1109/TBME.2015.2432137

21. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402

22. Ahsan, S., M. Koutsoupidou, E. Razzicchia, I. Sotiriou, and P. Kosmas, "Advances towards the development of a brain microwave imaging scanner," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, Mar. 2019.

23. Fhager, A., S. Candefjord, M. Elam, and M. Persson, "3D simulations of intracerebral hemorrhage detection using broadband microwave technology," Sensors, Vol. 19, No. 16, 3482, 2019.
doi:10.3390/s19163482

24. Wu, Y., B. Liu, and M. Zhu, "A single-pair antenna microwave medical detection system based on unsupervised feature learning," International Conference on Computational Social Networks, 404-414, Springer, Dec. 2018.

25. Zhang, Y.-D. and L. Wu, "An MR brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.
doi:10.2528/PIER12061410

26. Parvati, K., P. Rao, and M. Mariya Das, "Image segmentation using gray-scale morphology and marker-controlled watershed transformation," Discrete Dynamics in Nature and Society, Vol. 2008, 2008.

27. Otsu, N., "A threshold selection method from gray-level histograms," IEEE Trans. Sys. Man. Cyber., Vol. 9, No. 1, 62-66, 1979, doi: 10.1109/TSMC.1979.4310076.
doi:10.1109/TSMC.1979.4310076

28. Liu, D., "Otsu method and K-means," Ninth International Conference on Hybrid Intelligent Systems, Vol. 1, 344-349, IEEE, 2009.

29. Vijayabhanu, R. and V. Radha, "Recognition and elimination of missing values and outliers from an anaerobic wastewater treatment system using K-Means cluster," 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Vol. 4, V4-186, 2010.

30. Tripathi, S., R. S. Anand, and E. Fernandez, "A review of brain MR image segmentation techniques," Proceedings of International Conference on Recent Innovations in Applied Science, Engineering & Technology, 16-17, 2018.

31. Guo, L. and A. Abbosh, "Stroke localization and classification using microwave tomography with k-means clustering and support vector machine," Bioelectromagnetics, Vol. 39, No. 4, 312-324, May 2018, doi: 10.1002/bem.22118.Epub2018Mar25. PMID: 29575011.
doi:10.1002/bem.22118