Vol. 115
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-10-09
Artificial Neural Network Based SIW Bandpass Filter Design Using Complementary Split Ring Resonators
By
Progress In Electromagnetics Research C, Vol. 115, 277-289, 2021
Abstract
A novel Artificial Neural Network (ANN) based two Substrate integrated waveguide (SIW) bandpass filters comprising Complementary Split Ring Resonators (CSRRs) are proposed in this paper. These CSRRs are modelled on the upper layer of the SIW cavity. A feed forward multilayer perceptron (FF-MLP) neural network is used to optimize the physical dimensions of the proposed filters. To validate the analytical results, physical prototypes of the proposed filters are fabricated, and a measurement is carried out with a Combinational Network Analyzer (Anritsu-MS2037C), and the obtained experimental results agree well with the estimated results using full wave analysis. Within the passband from 8.22 to 8.95 GHz, S12 of the first filter shows better than -0.5 dB insertion loss (IL) and a fractional bandwidth of 8.5%, and within the passband from 8.21 to 8.73 GHz, the second filter shows IL about -0.8 dB and a fractional bandwidth of 6.1%.
Citation
Ranjit Kumar Rayala, and Singaravelu Raghavan, "Artificial Neural Network Based SIW Bandpass Filter Design Using Complementary Split Ring Resonators," Progress In Electromagnetics Research C, Vol. 115, 277-289, 2021.
doi:10.2528/PIERC21072305
References

1. Deslandes, K. Wu, "Single-substrate integration technique of planar circuits and Waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820

2. Khorand, T. and M. S. Bayati, "Novel half-mode substrate integrated waveguide bandpass filters using semi-hexagonal resonators," International Journal of Electronics and Communications (AEU), Vol. 95, 52-58, 2018.
doi:10.1016/j.aeue.2018.08.009

3. Ananya, P., P. Athira, and S. Raghavan, "Miniaturized band pass filter in substrate integrated waveguide technology," International Journal of Engineering & Technology, Vol. 7, No. 3.13, 95-98, 2018.
doi:10.14419/ijet.v7i3.13.16332

4. Ananya, P., P. Athira, and S. Raghavan, "Miniaturizing SIW filters with SLOW-wave technique," AEU --- Int. J. Electron. Commun., Vol. 84, 360-365, 2018.

5. Bozzi, M., G. Apostolos, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," Microwaves, Antennas & Propagation, Vol. 5, 909-920, IET, 2011.
doi:10.1049/iet-map.2010.0463

6. Krushna Kanth, V. and S. Raghavan, "EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application," J. Comput. Electron., Vol. 18, 189-196, 2019.
doi:10.1007/s10825-018-1272-z

7. Krushna Kanth, V. and R. Singaravelu, "Design of a hybrid A-sandwich radome using a strongly coupled frequency selective surface element," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 8, 738-748, 2020.
doi:10.1017/S1759078720000021

8. Krushna Kanth, V. and R. Singaravelu, "Design and implementation of 2.5D frequency selective surface based on substrate integrated waveguide technology," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 3, 255-267, 2019.
doi:10.1017/S1759078718001678

9. Tomassoni, C., L. Silvestri, M. Bozzi, and L. Perregrini, "Substrate-integrated waveguide filters based on mushroom-shaped resonators," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 4-5, 741-749, 2016.
doi:10.1017/S1759078716000453

10. Chen, C. and J. Qin, "Triple-mode dual-band bandpass filter based on cross-shaped substrate integrated waveguide," Electronics Letters, Vol. 55, No. 3, 138-140, 2018.
doi:10.1049/el.2018.7172

11. Xu, J., J. J. Bi, Z. L. Li, and R. S. Chen, "Optimization of SIW band-pass filter with wide and sharp stopband using space mapping," International Journal of Electronics, Vol. 103, No. 12, 2042-2051, 2016.
doi:10.1080/00207217.2016.1178338

12. Aghayari, H., N. Komjani, and N. M. Garmjani, "A novel H plane filter using double-layer substrate integrated waveguide with defected ground structures," International Journal of Electronics, Vol. 100, No. 6, 851-862, 2013.
doi:10.1080/00207217.2012.727101

13. Chaudhury, S. S., S. Awasthi, and R. K. Singh, "Dual band bandpass filter based on substrated integrated waveguide loaded with mushroom resonators," Microw. Opt. Technol. Lett., Vol. 62, 2226-2235, 2020.
doi:10.1002/mop.32315

14. Chen, L.-N., Y.-C. Jiao, Z. Zhang, and F.-S. Zhang, "Miniaturized substrate integrated waveguide dual-mode filters loaded by a series of cross-slot structures," Progress In Electromagnetics Research C, Vol. 29, 29-39, 2012.
doi:10.2528/PIERC12032302

15. Zhang, Q., W. Yin, S. He, and L. Wu, "Compact Substrate Integrated Waveguide (SIW) bandpass filter with Complementary Split-Ring Resonators (CSRRs)," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 426-428, 2010.
doi:10.1109/LMWC.2010.2049258

16. Li, W., Z. Tang, and X. Cao, "Design of a SIW bandpass filter using defected ground structure with CSRRs," Active and Passive Electronic Components, 6 pages, 2017.

17. Wu, L., X. Zhou, Q. Wei, and W. Yin, "An extended doublet Substrate Integrated Waveguide (SIW) bandpass filter with a Complementary Split Ring Resonator (CSRR)," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 12, 777-779, 2009.
doi:10.1109/LMWC.2009.2034034

18. Dong, D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156

19. Pu, J., F. Xu, and Y. Li, "Miniaturized substrate integrated waveguide bandpass filters based on novel complementary split ring resonators," IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Nanjing, China, 2019.

20. Jiang, W., W. Shen, L. Zhou, and W.-Y. Yin, "Miniaturized and highselectivity Substrate Integrated Waveguide (SIW) bandpass filter loaded by Complementary Split-Ring Resonators (CSRRs)," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1448-1459, 2012.
doi:10.1080/09205071.2012.702203

21. Park, W.-Y. and S. Lim, "Miniaturized half-mode substrate integrated waveguide bandpass filter loaded with double-sided complementary split-ring resonators," Electromagnetics, Vol. 32, No. 4, 200-208, 2012.
doi:10.1080/02726343.2012.672037

22. Huang, L., I. D. Robertson, N. Yuan, and J. Huang, "Novel substrate integrated waveguide bandpass filter with broadside-coupled complementary split ring resonators," IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012.

23. Ghayoumi Zadeh, H. and M. Danaeian, "Miniaturized substrate integrated waveguide filter using fractal open complementary split-ring resonators," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, 2018.

24. Yan, T., X.-H. Tang, Z.-X. Xu, and D. Lu, "A novel type of bandpass filter using complementary open-ring resonator loaded HMSIW with an electric cross-coupling," Microwave and Optical Technology Letters, Vol. 58, 998-1001, 2016.
doi:10.1002/mop.29719

25. Chu, P., et al. "Dual-mode substrate integrated waveguide filter with flexible response," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 3, 824-830, March 2017.
doi:10.1109/TMTT.2016.2633346

26. Angiulli, G., E. Arnieri, D. De Carlo, and G. Amendola, "Feed forward neural network characterization of circular SIW resonators," IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 2008.

27. Amendola, G., G. Angiulli, E. Arnieri, L. Boccia, and D. De Carlo, "Characterization of lossy SIW resonators based on multilayer perceptron neural networks on graphics processing unit," Progress In Electromagnetics Research C, Vol. 42, 1-11, 2013.
doi:10.2528/PIERC13051001

28. Li, J. and T. Dong, "Design of a substrate integrated waveguide power divider that uses a neural network," 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 2010.

29. Zhang, Z., Q. S. Cheng, H. Chen, and F. Jiang, "An efficient hybrid sampling method for neural network-based microwave component modeling and optimization," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 7, 625-628, 2020.
doi:10.1109/LMWC.2020.2995858