1. García-Jimeno, S., R. Ortega-Palacios, M. F. Cepeda-Rubio, A. Vera, L. Leija-Salas, and J. Estelrich, "Improved thermal ablation efficacy using magnetic nanoparticles: A study in tumor phantoms," Progress In Electromagnetics Research, Vol. 128, 229-248, 2012.
doi:10.2528/PIER12020108
2. Zhu, X., J. Li, P. Peng, N. Hosseini-Nassab, and B. R. Smith, "Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite," Nano Lett., Vol. 19, 6725, 2019.
doi:10.1021/acs.nanolett.9b01202
3. Trujillo-Romero, C. J., S. Garcia-Jimeno, A. Vera-Hernandez, L. Leija-Salas, and J. Estelrich, "Using nanoparticles for enhancing the focusing heating effect of an external waveguide applicator for oncology hyperthermia: Evaluation in muscle and tumor phantoms," Progress In Electromagnetics Research, Vol. 121, 343-363, 2011.
doi:10.2528/PIER11092911
4. Zheng, B., et al. "Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo," Theranostics, Vol. 6, 291-301, 2016.
doi:10.7150/thno.13728
5. Yu, E. Y., et al. "Magnetic particle imaging: A novel in vivo imaging platform for cancer detection," Nano Lett., Vol. 17, 1648, 2017.
doi:10.1021/acs.nanolett.6b04865
6. Zhou, X. Y., et al. "Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking," Curr. Opin. Chem. Biol., Vol. 45, 131, 2018.
doi:10.1016/j.cbpa.2018.04.014
7. Wu, L. C., et al. "A review of magnetic particle imaging and perspectives on neuroimaging," Am. J. Neuroradiol., Vol. 40, 206, 2019.
doi:10.3174/ajnr.A5896
8. Gleich, B. and J. Weizenecker, "Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite," Nature, Vol. 435, 1214, 2005.
doi:10.1038/nature03808
9. Weizenecker, J., B. Gleich, J. Rahmer, and J. Borgert, "Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles," Phys. Med. Biol., Vol. 57, 7317, 2012.
doi:10.1088/0031-9155/57/22/7317
10. Graeser, M., K. Bente, and T. M. Buzug, "Dynamic single-domain particle model for magnetite particles with combined crystalline and shape anisotropy," J. Phys. D: Appl. Phys., Vol. 48, 275001, 2015.
doi:10.1088/0022-3727/48/27/275001
11. Graeser, M., K. Bente, A. Neumann, and T. M. Buzug, "Trajectory dependent particle response for anisotropic mono domain particles in magnetic particle imaging," J. Phys. D: Appl. Phys., Vol. 49, 045007, 2016.
doi:10.1088/0022-3727/49/4/045007
12. Orendorff, R., et al. "First in vivo traumatic brain injury imaging via magnetic particle imaging," Phys. Med. Biol., Vol. 62, 3501, 2017.
doi:10.1088/1361-6560/aa52ad
13. Wang, P., et al. "Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models," Quant. Imaging Med. Surg., Vol. 8, 114, 2018.
doi:10.21037/qims.2018.02.06
14. Jung, K. O., H. Jo, J. H. Yu, S. S. Gambhir, and G. Pratx, "Development and MPI tracking of novel hypoxia-targeted theranostic exosomes," Biomaterials, Vol. 177, 139, 2018.
doi:10.1016/j.biomaterials.2018.05.048
15. Ota, S., et al. "Effects of size and anisotropy of magnetic nanoparticles associated with dynamics of easy axis for magnetic particle imaging," J. Magn. Magn. Mater., Vol. 474, 311, 2019.
doi:10.1016/j.jmmm.2018.11.043
16. Zhao, Z., N. Garraud, D. P. Arnold, and C. Rinaldi, "Effects of particle diameter and magnetocrystalline anisotropy on magnetic relaxation and magnetic particle imaging performance of magnetic nanoparticles," Phys. Med. Biol., Vol. 65, 025014, 2020.
doi:10.1088/1361-6560/ab5b83
17. Makela, A. V., J. M. Gaudet, M. A. Schott, O. C. Sehl, C. H. Contag, and P. J. Foster, "Magnetic particle imaging of macrophages associated with cancer: Filling the voids left by iron-based magnetic resonance imaging," Mol. Imaging Biol., Vol. 22, 958, 2020.
doi:10.1007/s11307-020-01473-0
18. Shi, X., G. Liu, X. Yan, and Y. Li, "Simulation research on magneto-acoustic concentration tomography of magnetic nanoparticles with magnetic induction," Comput. Biol. Med., Vol. 119, 103653, 2020.
doi:10.1016/j.compbiomed.2020.103653
19. Yan, X., Y. Pan, W. Chen, Z. Xu, and Z. Li, "Simulation research on the forward problem of magnetoacoustic concentration tomography for magnetic nanoparticles with magnetic induction in a saturation magnetization state," J.Phys. D: Appl. Phys., Vol. 54, 075002, 2021.
doi:10.1088/1361-6463/abc27c
20. Yan, X., Z. Xu, W. Chen, and Y. Pan, "Implementation method for magneto-acoustic concentration tomography with magnetic induction (MACT-MI) based on the method of moments," Comput. Biol. Med., Vol. 128, 104105, 2021.
doi:10.1016/j.compbiomed.2020.104105
21. Carrey, J., B. Mehdaoui, and M. Respaud, "Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization," J. Appl. Phys., Vol. 109, 083921, 2011.
doi:10.1063/1.3551582
22. Halgamuge, M. N. and T. Song, "Optimizing heating efficiency of hyperthermia: Specific loss power of magnetic sphere composed of superparamagnetic nanoparticles," Progress In Electromagnetics Research B, Vol. 87, 1-17, 2020.
doi:10.2528/PIERB19121702
23. Miclaus, S., M. Racuciu, and P. Bechet, "H-field contribution to the electromagnetic energy deposition in tissues similar to the brain but containing ferrimagnetic particles, during use of face-held radio transceivers," Progress In Electromagnetics Research B, Vol. 73, 49-60, 2017.
doi:10.2528/PIERB17010101
24. Miclaus, S., C. Iftode, and A. Miclaus, "Would the human brain be able to erect specific effects due to the magnetic field component of an UHF field via magnetite nanoparticles?," Progress In Electromagnetics Research M, Vol. 69, 23-36, 2018.
doi:10.2528/PIERM18030806
25. Rusakov, V. V., et al. "Nonlinear magnetic response of a viscoelastic ferrocolloid: Effective field approximation," Colloid J., Vol. 83, 116, 2021.
doi:10.1134/S1061933X21010117
26. Das, P., et al. "Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia," J. Colloid Interface Sci., Vol. 579, 391, 2020.
doi:10.1016/j.jcis.2020.05.119
27. Mamiya, H. and B. Jeyadevan, "Nonequilibrium magnetic response of anisotropic superparam-agnetic nanoparticles and possible artifacts in magnetic particle imaging," PLoS One, Vol. 10, e0118156, 2015.
doi:10.1371/journal.pone.0118156
28. Gupta, A. K. and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomaterials, Vol. 26, 3995, 2005.
doi:10.1016/j.biomaterials.2004.10.012
29. Kus, M., F. Ozel, N. M. Varal, and M. Ersoz, "Luminescence enhancement of OLED performance by doping colloidal magnetic FE3O4 nanoparticles," Progress In Electromagnetics Research, Vol. 134, 509-524, 2013.
doi:10.2528/PIER12103106
30. Kötitz, R., et al. "Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles," J. Magn. Magn. Mater., Vol. 194, 62, 1999.
doi:10.1016/S0304-8853(98)00580-0
31. Ekaterina, A., O. Alexey, and J. Philip, "Static magnetization of immobilized, weakly interacting, superparamagnetic nanoparticles," Nanoscale, Vol. 11, 21834, 2019.
doi:10.1039/C9NR07425B
32. Li, Y., Q. Ma, D. Zhang, and R. Xia, "Acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction," Chin. Phys. B., Vol. 20, 084302, 2011.
doi:10.1088/1674-1056/20/8/084302
33. Ota, S., T. Yamada, and Y. Takemura, "Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement," J. Appl. Phys., Vol. 117, 17D713, 2015.
doi:10.1063/1.4914061
34. Brandl, M., M. Mayer, J. Hartmann, T. Posnicek, C. Fabian, and D. Falkenhagen, "Theoretical analysis of ferromagnetic microparticles in streaming liquid under the in uence of external magnetic forces," J. Magn. Magn. Mate., Vol. 322, 2454, 2011.
doi:10.1016/j.jmmm.2010.02.056