Vol. 116
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-11-23
Simulation Research on Magnetoacoustic Concentration Tomography with Magnetic Induction Based on Uniaxial Anisotropy of Magnetic Nanoparticles
By
Progress In Electromagnetics Research C, Vol. 116, 221-233, 2021
Abstract
Magnetoacoustic concentration tomography with magnetic induction (MACT-MI) is a noninvasive imaging method that reconstructs the concentration image of magnetic nanoparticles (MNPs) based on the acoustic pressure signal generated by the magnetic properties of MNPs. The performance of MNPs is of great significance in MACT-MI. To study influences of the uniaxial anisotropy of MNPs on MACT-MI, firstly, based on the static magnetization curve, the force characteristic that the MNPs with uniaxial anisotropy experienced was analyzed. The magnetic force equation with the space component separated from the time term was deduced. The acoustic pressure equation containing the concentration of the MNPs with uniaxial anisotropy was derived. Then, a two-dimensional axisymmetric simulation model was constructed to compare magnetic force, acoustic source, and acoustic pressure before and after considering the uniaxial anisotropy of MNPs. The effect of scanning angle and detection radius of ultrasonic transducer on the acoustic pressure was studied. Finally, the concentration image of the MNPs with uniaxial anisotropy was reconstructed by the time reversal method and the method of moments (MoM). Theoretical considerations and simulation results have shown that the magnetic force has a triple increase after taking into account the uniaxial anisotropy of MNPs. The take-off time of acoustic pressure waves is only related to the position of the uniaxial anisotropy MNPs region. From the reconstructed image, concentration distribution and spatial location and size information of the uniaxial anisotropy MNPs region can be distinguished. The research results may lay the foundation for MACT-MI in subsequent experiments and even clinical applications.
Citation
Xiaoheng Yan, Yuxin Hu, Weihua Chen, Xiaoyu Shi, Ye Pan, and Zhengyang Xu, "Simulation Research on Magnetoacoustic Concentration Tomography with Magnetic Induction Based on Uniaxial Anisotropy of Magnetic Nanoparticles," Progress In Electromagnetics Research C, Vol. 116, 221-233, 2021.
doi:10.2528/PIERC21071201
References

1. García-Jimeno, S., R. Ortega-Palacios, M. F. Cepeda-Rubio, A. Vera, L. Leija-Salas, and J. Estelrich, "Improved thermal ablation efficacy using magnetic nanoparticles: A study in tumor phantoms," Progress In Electromagnetics Research, Vol. 128, 229-248, 2012.
doi:10.2528/PIER12020108

2. Zhu, X., J. Li, P. Peng, N. Hosseini-Nassab, and B. R. Smith, "Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite," Nano Lett., Vol. 19, 6725, 2019.
doi:10.1021/acs.nanolett.9b01202

3. Trujillo-Romero, C. J., S. Garcia-Jimeno, A. Vera-Hernandez, L. Leija-Salas, and J. Estelrich, "Using nanoparticles for enhancing the focusing heating effect of an external waveguide applicator for oncology hyperthermia: Evaluation in muscle and tumor phantoms," Progress In Electromagnetics Research, Vol. 121, 343-363, 2011.
doi:10.2528/PIER11092911

4. Zheng, B., et al. "Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo," Theranostics, Vol. 6, 291-301, 2016.
doi:10.7150/thno.13728

5. Yu, E. Y., et al. "Magnetic particle imaging: A novel in vivo imaging platform for cancer detection," Nano Lett., Vol. 17, 1648, 2017.
doi:10.1021/acs.nanolett.6b04865

6. Zhou, X. Y., et al. "Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking," Curr. Opin. Chem. Biol., Vol. 45, 131, 2018.
doi:10.1016/j.cbpa.2018.04.014

7. Wu, L. C., et al. "A review of magnetic particle imaging and perspectives on neuroimaging," Am. J. Neuroradiol., Vol. 40, 206, 2019.
doi:10.3174/ajnr.A5896

8. Gleich, B. and J. Weizenecker, "Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite," Nature, Vol. 435, 1214, 2005.
doi:10.1038/nature03808

9. Weizenecker, J., B. Gleich, J. Rahmer, and J. Borgert, "Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles," Phys. Med. Biol., Vol. 57, 7317, 2012.
doi:10.1088/0031-9155/57/22/7317

10. Graeser, M., K. Bente, and T. M. Buzug, "Dynamic single-domain particle model for magnetite particles with combined crystalline and shape anisotropy," J. Phys. D: Appl. Phys., Vol. 48, 275001, 2015.
doi:10.1088/0022-3727/48/27/275001

11. Graeser, M., K. Bente, A. Neumann, and T. M. Buzug, "Trajectory dependent particle response for anisotropic mono domain particles in magnetic particle imaging," J. Phys. D: Appl. Phys., Vol. 49, 045007, 2016.
doi:10.1088/0022-3727/49/4/045007

12. Orendorff, R., et al. "First in vivo traumatic brain injury imaging via magnetic particle imaging," Phys. Med. Biol., Vol. 62, 3501, 2017.
doi:10.1088/1361-6560/aa52ad

13. Wang, P., et al. "Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models," Quant. Imaging Med. Surg., Vol. 8, 114, 2018.
doi:10.21037/qims.2018.02.06

14. Jung, K. O., H. Jo, J. H. Yu, S. S. Gambhir, and G. Pratx, "Development and MPI tracking of novel hypoxia-targeted theranostic exosomes," Biomaterials, Vol. 177, 139, 2018.
doi:10.1016/j.biomaterials.2018.05.048

15. Ota, S., et al. "Effects of size and anisotropy of magnetic nanoparticles associated with dynamics of easy axis for magnetic particle imaging," J. Magn. Magn. Mater., Vol. 474, 311, 2019.
doi:10.1016/j.jmmm.2018.11.043

16. Zhao, Z., N. Garraud, D. P. Arnold, and C. Rinaldi, "Effects of particle diameter and magnetocrystalline anisotropy on magnetic relaxation and magnetic particle imaging performance of magnetic nanoparticles," Phys. Med. Biol., Vol. 65, 025014, 2020.
doi:10.1088/1361-6560/ab5b83

17. Makela, A. V., J. M. Gaudet, M. A. Schott, O. C. Sehl, C. H. Contag, and P. J. Foster, "Magnetic particle imaging of macrophages associated with cancer: Filling the voids left by iron-based magnetic resonance imaging," Mol. Imaging Biol., Vol. 22, 958, 2020.
doi:10.1007/s11307-020-01473-0

18. Shi, X., G. Liu, X. Yan, and Y. Li, "Simulation research on magneto-acoustic concentration tomography of magnetic nanoparticles with magnetic induction," Comput. Biol. Med., Vol. 119, 103653, 2020.
doi:10.1016/j.compbiomed.2020.103653

19. Yan, X., Y. Pan, W. Chen, Z. Xu, and Z. Li, "Simulation research on the forward problem of magnetoacoustic concentration tomography for magnetic nanoparticles with magnetic induction in a saturation magnetization state," J.Phys. D: Appl. Phys., Vol. 54, 075002, 2021.
doi:10.1088/1361-6463/abc27c

20. Yan, X., Z. Xu, W. Chen, and Y. Pan, "Implementation method for magneto-acoustic concentration tomography with magnetic induction (MACT-MI) based on the method of moments," Comput. Biol. Med., Vol. 128, 104105, 2021.
doi:10.1016/j.compbiomed.2020.104105

21. Carrey, J., B. Mehdaoui, and M. Respaud, "Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization," J. Appl. Phys., Vol. 109, 083921, 2011.
doi:10.1063/1.3551582

22. Halgamuge, M. N. and T. Song, "Optimizing heating efficiency of hyperthermia: Specific loss power of magnetic sphere composed of superparamagnetic nanoparticles," Progress In Electromagnetics Research B, Vol. 87, 1-17, 2020.
doi:10.2528/PIERB19121702

23. Miclaus, S., M. Racuciu, and P. Bechet, "H-field contribution to the electromagnetic energy deposition in tissues similar to the brain but containing ferrimagnetic particles, during use of face-held radio transceivers," Progress In Electromagnetics Research B, Vol. 73, 49-60, 2017.
doi:10.2528/PIERB17010101

24. Miclaus, S., C. Iftode, and A. Miclaus, "Would the human brain be able to erect specific effects due to the magnetic field component of an UHF field via magnetite nanoparticles?," Progress In Electromagnetics Research M, Vol. 69, 23-36, 2018.
doi:10.2528/PIERM18030806

25. Rusakov, V. V., et al. "Nonlinear magnetic response of a viscoelastic ferrocolloid: Effective field approximation," Colloid J., Vol. 83, 116, 2021.
doi:10.1134/S1061933X21010117

26. Das, P., et al. "Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia," J. Colloid Interface Sci., Vol. 579, 391, 2020.
doi:10.1016/j.jcis.2020.05.119

27. Mamiya, H. and B. Jeyadevan, "Nonequilibrium magnetic response of anisotropic superparam-agnetic nanoparticles and possible artifacts in magnetic particle imaging," PLoS One, Vol. 10, e0118156, 2015.
doi:10.1371/journal.pone.0118156

28. Gupta, A. K. and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomaterials, Vol. 26, 3995, 2005.
doi:10.1016/j.biomaterials.2004.10.012

29. Kus, M., F. Ozel, N. M. Varal, and M. Ersoz, "Luminescence enhancement of OLED performance by doping colloidal magnetic FE3O4 nanoparticles," Progress In Electromagnetics Research, Vol. 134, 509-524, 2013.
doi:10.2528/PIER12103106

30. Kötitz, R., et al. "Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles," J. Magn. Magn. Mater., Vol. 194, 62, 1999.
doi:10.1016/S0304-8853(98)00580-0

31. Ekaterina, A., O. Alexey, and J. Philip, "Static magnetization of immobilized, weakly interacting, superparamagnetic nanoparticles," Nanoscale, Vol. 11, 21834, 2019.
doi:10.1039/C9NR07425B

32. Li, Y., Q. Ma, D. Zhang, and R. Xia, "Acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction," Chin. Phys. B., Vol. 20, 084302, 2011.
doi:10.1088/1674-1056/20/8/084302

33. Ota, S., T. Yamada, and Y. Takemura, "Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement," J. Appl. Phys., Vol. 117, 17D713, 2015.
doi:10.1063/1.4914061

34. Brandl, M., M. Mayer, J. Hartmann, T. Posnicek, C. Fabian, and D. Falkenhagen, "Theoretical analysis of ferromagnetic microparticles in streaming liquid under the in uence of external magnetic forces," J. Magn. Magn. Mate., Vol. 322, 2454, 2011.
doi:10.1016/j.jmmm.2010.02.056