1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., Vol. 49, No. 6, 101-107, Jun. 2011.
doi:10.1109/MCOM.2011.5783993
2. Andrews, J. G., et al. "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098
3. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813
4. Hong, W., K. Baek, and S. Ko, "Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6250-6261, Dec. 2017.
doi:10.1109/TAP.2017.2740963
5. Ying, Z., "Antennas in cellular phones for mobile communications," Proc. IEEE, Vol. 100, No. 7, 2286-2296, Jul. 2012.
doi:10.1109/JPROC.2012.2186214
6. Roh, W., et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, Feb. 2014.
doi:10.1109/MCOM.2014.6736750
7. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Commun. Mag., Vol. 52, No. 9, 63-69, Sep. 2014.
doi:10.1109/MCOM.2014.6894454
8. Yin, J., Q. Wu, C. Yu, H. Wang, and W. Hong, "Broadband endfire magnetoelectric dipole antenna array using SICL feeding network for 5G millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 67, No. 7, 4895-4900, Jul. 2019.
doi:10.1109/TAP.2019.2916463
9. Mak, K.-M., K.-K. So, H.-W. Lai, and K.-M. Luk, "Magnetoelectric dipole leaky-wave antenna for millimeter-wave application," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6395-6402, Dec. 2017.
doi:10.1109/TAP.2017.2722868
10. Tang, M., T. Shi, and R. W. Ziolkowski, "A study of 28 GHz, planar, multilayered, electrically small, broadside radiating, huygens source antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6345-6354, Dec. 2017.
doi:10.1109/TAP.2017.2700888
11. Park, J., J. Ko, H. Kwon, B. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514
12. Yu, B., K. Yang, C.-Y.-D. Sim, and G. Yang, "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 462-466, Jan. 2018.
doi:10.1109/TAP.2017.2772084
13. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW-fed all-metallic Vivaldi antennas with pattern diversity for millimeter wave 5G access points," Progress In Electromagnetics Research M, Vol. 94, 41-49, 2020.
doi:10.2528/PIERM20052003
14. Watanabe, A. O., M. Ali, S. Y. B. Sayeed, R. R. Tummala, and M. R. Pulugurtha, "A review of 5G front-end systems package integration," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 1, 118-133, Jan. 2021.
doi:10.1109/TCPMT.2020.3041412
15. Zhang, Y., "Antenna-in-package technology: Its early development [historical corner]," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 111-118, Jun. 2019.
doi:10.1109/MAP.2019.2907916
16. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
doi:10.1109/JPROC.2019.2933267
17. Park, J., D. Choi, and W. Hong, "Millimeter-wave phased-array Antenna-in-Package (AiP) using stamped metal process for enhanced heat dissipation," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 11, 2355-2359, Nov. 2019.
doi:10.1109/LAWP.2019.2938229
18. Ahmad, Z. and J. Hesselbarth, "High-efficiency wideband surface-mount elevated 3-D patch antenna for millimeter waves," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 573-576, 2017.
doi:10.1109/LAWP.2017.2682962
19. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6904-6914, Dec. 2017.
doi:10.1109/TAP.2017.2759899
20. Hong, W., K.-H. Baek, and A. Goudelev, "Multilayer antenna package for IEEE 802.11ad employing ultralow-cost FR4," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5932-5938, Dec. 2012.
doi:10.1109/TAP.2012.2214196
21. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6372-6379, Dec. 2017.
doi:10.1109/TAP.2017.2722873
22. Park, J., H. Seong, Y. N. Whang, and W. Hong, "Energy-efficient 5G phased arrays incorporating vertically polarized endre planar folded slot antenna for mmWave mobile terminals," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 230-241, Jan. 2020.
doi:10.1109/TAP.2019.2930100
23. Zhang, Y. P., "Integration of microstrip patch antenna on ceramic ball grid array package," Electron. Lett., Vol. 38, No. 5, 207-208, Feb. 2002.
doi:10.1049/el:20020144
24. Zhang, Y. P., M. Sun, K. M. Chua, L. L. Wai, and D. X. Liu, "Integration of slot antenna in LTCC package for 60 GHz radios," Electron. Lett., Vol. 44, No. 5, 330-331, Feb. 2008.
doi:10.1049/el:20083352
25. Sun, M., Y. P. Zhang, K. M. Chua, L. L. Wai, D. Liu, and B. P. Gaucher, "Integration of Yagi antenna in LTCC package for differential 60-GHz radio," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2780-2783, Aug. 2008.
doi:10.1109/TAP.2008.927577
26. Watanabe, A. O., et al. "3D glass-based panel-level package with antenna and low-loss interconnects for millimeter-wave 5G applications," 2019 IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G), 1-3, Aug. 2019.
27. Jin, C., V. N. Sekhar, X. Bao, B. Chen, B. Zheng, and R. Li, "Antenna-in-package design based on wafer-level packaging with through silicon via technology," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 9, 1498-1505, Sep. 2013.
doi:10.1109/TCPMT.2013.2261855
28. Huang, Y. and K. Boyle, Antennas: From Theory to Practice, 379, 2008.
29. Kangasvieri, T., J. Halme, J. Vahakangas, and M. Lahti, "Broadband BGA-via transitions for reliable RF/Microwave LTCC-SiP module packaging," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 1, 34-36, Jan. 2008.
doi:10.1109/LMWC.2007.911986