Vol. 114
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-08-10
Energy Harvesting System Using Rectenna Applied to Wireless Powered Remote Temperature Sensing
By
Progress In Electromagnetics Research C, Vol. 114, 203-216, 2021
Abstract
Nowadays, due to the ever-increasing number of electronic devices and communication systems that use high-frequency electromagnetic waves, a significant level of electromagnetic energy is available in the environment that is not entirely used. In this work, a complete electromagnetic harvesting system using a rectenna is proposed to collect this energy and feed a temperature measurement module. The rectenna is constituted by a combination of a microstrip antenna that captures the electromagnetic energy and a rectifier circuit that converts it into electric energy in direct current (DC) form to feed ultra-low-power loads. The proposed system uses a rectangular microstrip antenna, designed and optimized by using the Computer Simulation Technology (CST®) software to operate at 2.45 GHz. This designed antenna presents a measured reflection coefficient lower than -20 dB at the operating frequency with a maximum gain equal to 7.26 dB. In addition, a voltage doubler rectifier circuit is designed and optimized by using the Advanced Design System (ADS®) to match the impedance of the designed antenna to reduce the reflection losses between these two modules, achieving maximum measured efficiency of approximately 33%. Furthermore, a boost converter circuit is designed for the power management between collected and delivered powers to the sensor and to provide appropriate voltage levels to feed the temperature measurement module. This module consists of an ultra-low-power microcontroller and a temperature sensor that operates in the range of 1.8-3.6 V. The procedures for designing and testing each module of this system are detailed. Finally, a prototype is built and tested under different operating conditions to confirm its functionality and feasibility. These tests show that the proposed system can operate without batteries, only with the harvested electromagnetic energy dispersed in the environment, even from modulated and pulsating sources, as is the case of commercial routers.
Citation
Felipe De Oliveira Silva Zanon, Ursula C. Resende, Guilherme Lopes De Figueiredo Brandão, and Icaro Veloso Soares, "Energy Harvesting System Using Rectenna Applied to Wireless Powered Remote Temperature Sensing," Progress In Electromagnetics Research C, Vol. 114, 203-216, 2021.
doi:10.2528/PIERC21060901
References

1. Shinohara, N., "Trends in wireless power transfer: WPT technology for energy harvesting, mllimeter-wave/THz rectennas, MIMO-WPT, and advances in near-field WPT applications," IEEE Microwave Magazine, Vol. 22, No. 1, 46-59, 2021.
doi:

504 Gateway Time-out


2. Gonçalves, Y., U. Resende, and I. Soares, "Electromagnetic energy harvesting using a glass window," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 19, No. 1, 50-59, 2020.
doi:The server didn't respond in time.

3. Hamied, F. M. A., K. Mahmoud, M. Hussein, and S. S. A. Obayya, "Design and analysis of rectangular spiral nano-antenna for solar energy harvesting," Progress In Electromagnetics Research C, Vol. 111, 25-34, 2021.
doi:

4. Wu, N., B. Bao, and Q. Wang, "Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output," Engineering Structures, Vol. 235, 112068, 2021.
doi:10.1016/j.engstruct.2021.112068

5. Shakeel, M., K. Rehman, S. Ahmad, M. Amin, N. Iqbal, and A. Khan, "A low-cost printed organic thermoelectric generator for low-temperature energy harvesting," Renewable Energy, Vol. 167, 853-860, 2021.
doi:10.1016/j.renene.2020.11.158

6. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833

7. Divakaran, S., D. Krishna, Nasimuddin, and J. K. Antony, "Dual-band multi-port rectenna for RF energy harvesting," Progress In Electromagnetics Research C, Vol. 107, 17-31, 2021.
doi:10.2528/PIERC20100802

8. Pandey, R., A. K. Shankhwar, and A. Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
doi:10.2528/PIERC20121102

9. Sanislav, T., G. D. Mois, S. Zeadally, and S. C. Folea, "Energy harvesting techniques for internet of things (IoT)," IEEE Access, Vol. 9, 39530-39549, 2021.
doi:10.1109/ACCESS.2021.3064066

10. Okba, A., A. Takacs, and H. Aubert, "Compact flat dipole rectenna for IoT applications," Progress In Electromagnetics Research C, Vol. 87, 39-49, 2018.
doi:10.2528/PIERC18071604

11. Dong, Y., P. Fan, and K. B. Letaief, "Energy harvesting powered sensing in IoT: Timeliness versus distortion," IEEE Internet of Things Journal, Vol. 7, No. 11, 10897-10911, 2020.
doi:10.1109/JIOT.2020.2990715

12. Xu, H., L. Tsang, J. Johnson, K. C. Jezek, J.-B. Yan, and P. Gogineni, "A combined active and passive method for the remote sensing of ice sheet temperature profiles," Progress In Electromagnetics Research, Vol. 167, 111-126, 2020.
doi:10.2528/PIER20030601

13. Williams, A., M. Torquato, I. Cameron, A. Fahmy, and J. Sienz, "Survey of energy harvesting technologies for wireless sensor networks," IEEE Access, Vol. 9, 77493-77510, 2021.
doi:10.1109/ACCESS.2021.3083697

14. Brandão, G. L. F., Ú. C. Resende, F. S. Bicalho, G. A. T. Almeida, and M. M. Afonso, "Parallel association of rectennas for electromagnetic energy harvesting," Proceedings of the 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, 2017.

15. Pereira, P., R. C. M. Pimenta, R. Adriano, G. L. F. Brandão, and Ú. C. Resende, "Antenna impedance correction for low power energy harvesting devices," Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 2017.

16. Corrêa, D. C., U. C. Resende, F. S. Bicalho, and Y. S. Gonçalves, "Design, optimization and experimental evaluation of a F-shaped multiband metamaterial antenna," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 17, No. 4, 590-603, 2018.
doi:10.1590/2179-10742018v17i41541

17. Li, S., F. Cheng, C. Gu, S. Yu, and K. Huang, "Efficient dual-band recti er using stepped impedance stub matching network for wireless energy harvesting," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 7, 921-924, 2021.
doi:10.1109/LMWC.2021.3078546

18. Liu, L., Q.-Y. Xiang, D. Tian, and Q. Feng, "A novel antenna feeding network with separately resonant frequency and impedance matching tunable capability," Progress In Electromagnetics Research Letters, Vol. 81, 85-91, 2019.
doi:10.2528/PIERL18120709

19. Wagih, M., N. Hillier, S. Yong, A. Weddell, and S. Beeby, "RF-powered wearable energy harvesting and storage module based on E-textile coplanar waveguide rectenna and supercapacitor," IEEE Open Journal of Antennas and Propagation, Vol. 2, 302-314, 2021.
doi:10.1109/OJAP.2021.3059501

20. Altíntaş, O., M. Aksoy, E. Ünal, M. Karaaslan, and C. Sabah, "Operating frequency recon guration study for a split ring resonator based micro uidic sensor," Journal of the Electrochemical Society, Vol. 167, No. 14, 147512, 2020.
doi:10.1149/1945-7111/abc656

21. Chakravartula, V., S. Rakshit, S. Dhanalakshmi, R. Kumar, and R. Narayanamoorthi, "Linear temperature distribution sensor using FBG in liquids --- Local heat transfer examination application," IEEE Sensors Journal, 2021.

22. Dalgaç, S., M. Furat, M. Karaaslan, O. Akgöl, F. Karadag, M. Zile, and M. Bakir, "Grease oil humidity sensor by using metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 18, 2488-2498, 2020.
doi:10.1080/09205071.2020.1824690

23. Yu, H., C. Wang, F. Meng, J. Xiao, J. Liang, H. Kim, S. Bae, D. Zou, E. Kim, N. Kim, M. Zhao, and B. Li, "Microwave humidity sensor based on carbon dots-decorated MOF-derived porous Co3O4 for breath monitoring and finger moisture detection," Carbon, 2021.

24. Lin, L., W. Jiang, X. Xu, and P. Xu, "A critical review of the application of electromagnetic fields for scaling control in water systems: Mechanisms, characterization, and operation," NPJ Clean Water, Vol. 3, No. 1, 202.

25. Ma, K., Z. Li, P. Liu, J. Yang, Y. Geng, B. Yang, and X. Guan, "Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay," IEEE Internet of Things Journal, 2021.

26. Lee, W., H. Park, S. Kim, S. Park, D. Kim, and H. Lee, "Wireless-powered VOCs sensor based on energy-harvesting metamaterial," Advanced Electronic Materials, Vol. 7, No. 5, 2001240, 2021.
doi:10.1002/aelm.202001240

27. Abdulkarim, Y., H. Awl, F. Alkurt, F. Muhammadsharif, S. Saeed, M. Karaaslan, M. Bakır, and H. Luo, "A thermally stable and polarization insensitive square-shaped water metamaterial with ultra-broadband absorption," Journal of Materials Research and Technology, Vol. 13, 1150-1158, 2020.

28. Cai, X., W. Geyi, and Y. Guo, "A compact rectenna with flat-top angular coverage for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 7, 1307-1311, 2021.
doi:10.1109/LAWP.2021.3078548

29. Lu, P., C. Song, and K. Huang, "Ultra-wideband rectenna using complementary resonant structure for microwave power transmission and energy harvesting," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 7, 3452-3462, 2021.
doi:10.1109/TMTT.2021.3067902

30. Roy, S., R. Tiang, M. Roslee, M. Ahmed, and M. Mahmud, "Quad-band multiport rectenna for RF energy harvesting in ambient environment," IEEE Access, Vol. 9, 77464-77481, 2021.
doi:10.1109/ACCESS.2021.3082914

31. Gu, X., L. Grauwin, D. Dousset, S. Hemour, and K. Wu, "Dynamic ambient RF energy density measurements of montreal for battery-free IoT sensor network planning," IEEE Internet of Things Journal, doi: 10.1109/JIOT.2021.3065683, 2021.
doi:doi: 10.1109/JIOT.2021.3065683

32. Balanis, C. A., Antenna Theory --- Analysis and Design, 2nd Ed., John Wiley & Sons, Hoboken, NJ, 1997.

33. Morais, R., J. Mendes, R. Silva, N. Silva, J. Sousa, and E. Peres, "A versatile, low-power and low-cost IoT device for field data gathering in precision agriculture practices," Agriculture, Vol. 11, No. 7, 619, 2021.
doi:10.3390/agriculture11070619

34. Sowmya, N., S. Rout, and R. Patjoshi, "Implementation of ultra-low-power electronics for biomedical applications," Electronic Devices, Circuits, and Systems for Biomedical Applications, 153-176, 2021.
doi:10.1016/B978-0-323-85172-5.00004-6

35. Stolojescu-Crisan, C., C. Crisan, and B. Butunoi, "An IoT-based smart home automation system," Sensors, Vol. 21, No. 11, 3784, 2021.
doi:10.3390/s21113784