Vol. 114
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-07-17
A Compact Non-Uniform Composite Right/Left-Handed Leaky-Wave Scanning Antenna with Elliptical Polarization for X-Band Application
By
Progress In Electromagnetics Research C, Vol. 114, 43-56, 2021
Abstract
A new compact nonuniform leaky-wave antenna (LWA) with left-handed elliptical polarization (LHEP), based on composite right/left-handed (CRLH) metamaterial operating in the range of 7-10.2 GHz is presented in the work. The nonuniform structure of a CRLH transmission line (TL) is realized by the placement of different configurations of inter-digital capacitor (IDC) in the form of sinusoid (SIN-IDC), on the top of metal wall of a half-mode substrate integrated waveguide (HMSIW). Balanced condition of the unit cells is provided by the change in slit width, amplitude and the number of SIN-IDC periods, as well as by relocation of two additional transition apertures arranged by both sides of SIN-IDC. Based on the known Hensen-Woodyard criterion, the optimal number of the unit cells was determined, when the gain coefficient varied from 7.5 to 9.8 dB in all of the operational range of antenna. The developed prototype of nonuniform CRLH LWA has the size of 8.1x115.2 mm. It is characterized by a continuous scan angle range equal to 117°. The maximum angle of rotation radiation pattern is -66° for backward radiation and +51° for direct radiation. The maximum efficiency of the antenna radiation is 85%, while the total one is 68%.
Citation
Alexander Ostankov, Vladimir Kashkarov, and Evgeniy Khripunov, "A Compact Non-Uniform Composite Right/Left-Handed Leaky-Wave Scanning Antenna with Elliptical Polarization for X-Band Application," Progress In Electromagnetics Research C, Vol. 114, 43-56, 2021.
doi:10.2528/PIERC21053103
References

1. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820

2. Hong, W., B. Liu, Y. Wang, Q. Lai, H. Tang, X. X. Yin, Y. D. Dong, Y. Zhang, and K. Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Proc. Joint 31st Int. Infrared Millimeter Waves Conf./14th Int. Terahertz Electronic Conf. 2006 (IRMMW-THz 2006), 219, 2006.

3. Jackson, D., C. Caloz, and T. Itoh, "Leaky-wave antennas," IEEE Proc., Vol. 100, No. 7, 2194-2206, July 2012.
doi:10.1109/JPROC.2012.2187410

4. Lyu, Y., X. Liu, P. Y. Wang, et al. "Leaky-wave antennas based on non-cutoff substrate integrated waveguide supporting beam scanning from backward to forward," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2155-2164, 2016.
doi:10.1109/TAP.2016.2550054

5. Prakash, V., S. Kumawat, and P. Singh, "Design and analysis of full and half mode substrate integrated waveguide planar leaky wave antenna with continuous beam scanning in X-Ku band," Frequenz, 2019.

6. Agrawal, R., P. Belwal, and S. Gupta, "Asymmetric substrate integrated waveguide leaky wave antenna with open stop band suppression and radiation efficiency equalization through broadside," Radioengineering, Vol. 27, No. 2, 409-416, 2018.
doi:10.13164/re.2018.0409

7. Caloz, C., T. Itoh, and A. Rennings, "CRLH metamaterial leaky-wave and resonant antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 5, 25-39, 2008.
doi:10.1109/MAP.2008.4674709

8. Caloz, C., T. Itoh, and (n.d.), "Novel microwave devices and structures based on the transmission line approach of meta-materials," IEEE MTT-S International Microwave Symposium Digest, 2003.

9. Sabahi, M. M., A. A. Heidari, and M. Movahhedi, "A compact CRLH circularly polarized leakywave antenna based on substrate-integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4407-4414, September 2018.
doi:10.1109/TAP.2018.2851278

10. Dong, Y. and T. Itoh, "Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 760-771, 2012.
doi:10.1109/TAP.2011.2173124

11. Noumi, R., J. Machac, N. Boulajefan, and A. Gharsallah, "Development of SIW LWA from non-uniform CRLH unit cells with SLL reduction," 2018 18th Mediterranean Microwave Symposium (MMS), 2018.

12. Pourghorban Saghati, A., M. M. Mirsalehi, and M. H. Neshati, "A HMSIW circularly polarized leaky-wave antenna with backward, broadside, and forward radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 451-454, 2014.
doi:10.1109/LAWP.2014.2309557

13. Mohtashami, Y. and J. R. Mohasee, "A butterfly substrate integrated leaky wave antenna," IEEE Trans. Antennas Propag., 2013.

14. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.
doi:10.1109/MMW.2004.1337766

15. Thomas, K. G. and G. Praveen, "Anovel wideband circularly polarized printed antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5564-5570, 2012.
doi:10.1109/TAP.2012.2208930

16. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: the Engineering Approach, Wiley-IEEE Press, 2006.

17. Henry, R. and M. Okoniewski, "A broadside-scanning half-mode substrate integrated waveguide periodic leaky-wave antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1429-1432, 2014.
doi:10.1109/LAWP.2014.2341217

18. Ostankov, A. V. and E. G. Khripunov, "Horn SIW-antenna with a special coplanar junction and dielectric lens for feeding of the planar leaky-wave antenna," Radiostroenie, No. 2, 1-26, 2020.

19. Jackson, D. R. and A. A. Oliner, Leaky-wave Antennas’ in Balanis, C.A., ‘Modern Antenna Handbook’, Ed. Hoboken, NJ, USA, Wiley, blue, November 26, 2007.

20. O'Connor, E. M., D. R. Jackson, and S. A. Long, "Extension of the Hansen-Woodyard condition for endfire leaky-wave antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1201-1204, 2010.
doi:10.1109/LAWP.2010.2091618