1. O'Loughlin, D., M. O'Halloran, M. Glavin, J. Martin, E. Jines, and M. A. Elahi, "Microwave breast imaging: Clinical advances and remaining challenges," IEEE Transactions on Biomedical Engineering, Vol. 65, No. 11, 2580-2590, Nov. 2018.
doi:10.1109/TBME.2018.2809541
2. O'Halloran, M., M. Glavin, and E. Jones, "Performance and robustness of a multistatic MIST beamforming algorithm for breast cancer detection," Progress In Electromagnetics Research, Vol. 105, 403-424, 2010.
doi:10.2528/PIER10011205
3. Winters, D. W., J. D. Shea, E. L. Madsen, G. R. Frank, B. D. van Veen, and S. C. Hagness, "Estimating the breast surface using UWB microwave monos," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 247-256, 2008.
doi:10.1109/TBME.2007.901028
4. Curtis, C. and E. Fear, "Beamforming in the frequency domain with applications to microwave breast imaging," IEEE 8th European Conference on Antennas and Propagation (EuCAP)), 72-75, The Hague, Netherlands, 2014.
5. Curtis, C., "Factors affecting image quality in near-field ultra-wideband radar imaging for biomedical applications,", University of Calgary, Calgary, 2015.
6. Bond, E. J., X. Li, S. C. Hagness, and B. D. van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 8, No. 51, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446
7. Maklad, B., C. Curtis, E. C. Fear, and G. G. Messier, "Neighborhood-based algorithm to facilitate the reduction of skin re ections in radar-based microwave," Progress In Electromagnetics Research B, Vol. 39, 115-139, 2012.
doi:10.2528/PIERB11122208
8. Kurrant, D., J. Bourqui, and E. Fear, "Surface estimation for microwave imaging," Sensors, Vol. 17, 1658, 2017.
doi:10.3390/s17071658
9. Garrett, J. and E. Fear, "A new breast phantom with a durable skin layer for microwave breast imaging," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1693-1700, 2015.
doi:10.1109/TAP.2015.2393854
10. Bourqui, J., D. Kurrant, B. R. Lavoie, and E. C. Fear, "Adaptive monostatic system for measuring microwave re ection from the breast," Sensors, Vol. 18, No. 5, 1340, 2018.
doi:10.3390/s18051340
11. Smith, M. R., I. Dasgupta, and E. Fear, "New resolution enhancement approach for tissue sensitive adaptive radar (TSAR)," 32nd Irish Signals and Systems Conference (ISSC 2021), IEEE, Athlone, Ireland, 2021, https://doi.org/10.1109/ISSC52156.2021.9467874.
12. Harris, F. J., "On the use of windows for harmonic analysis with the discrete fourier transform," Proceedings of the IEEE, Vol. 66, 51-83, 1978.
doi:10.1109/PROC.1978.10837
13. Smith, M. R., "FFT --- fRISCy Fourier transforms," Microprocessors and Microsystems, Vol. 17, No. 9, 507-521, 1993.
doi:10.1016/S0141-9331(09)91002-X
14. Liang, Z. P., F. E. Boada, R. T. Constable, E. M. Haacke, P. C. Lauterbaur, and M. R. Smith, "Constrained reconstruction methods in MR imaging," Reviews of Magnetic Resonance in Medicine, Vol. 4, No. 2, 67-185, 1992.
15. Mitra, S. K., Digital Signal Processing: A Computer-based Approach, McGraw Hill, 1998.
16. Curtis, C., R. Frayne, and E. Fear, "Using X-ray mammograms to assist in microwave breast image interpretation," International Journal of Biomedical Imaging, 2012, doi.org/10.1155/202/235380.
17. SPEAG "The Finite-Difference Time-Domain (FDTD) technique,", [Online], 2020 [cited 2020 December 1]. Available from: speag.swiss/products/semcad/modules/what-is-fdtd/.
18. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844
19. Mathworks "DTW --- Distance between signals using dynamic time warping,", [Online], 2021 [cited 2021 3]. Available from: mathworks.com/help/signal/ref/dtw.html.
20. Petitjean, F. and I. Paparrizos, "DBA: Averaging for dynamic time warping,", [Online], 2017 [cited 2021 3 1]. Available from: github.com/fpetitjean/DBA.
21. Petitjean, F., K. Ketterlin, and P. Gancarski, "A global averaging method for dynamic time warping, with applications to clustering," Pattern Recognition, Vol. 4, No. 3, 678-693, 2011.
doi:10.1016/j.patcog.2010.09.013
22. Schultz, D. and B. Jain, "Non-smooth analysis and sub-gradient methods for averaging in dynamic time warping spaces," Pattern Recognition, Vol. 74, 340-358, 2017.
23. Chan, R. S. L., P. Gordon, and M. R. Smith, "Evaluation of dynamic time warp barycenter aver-aging (DBA) for its potential in generating a consensus nanopore signal for genetic and epigenetic sequences," International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'18), 4821-2824, IEEE, Honolulu, 2018, https://doi.org/10.1109/EMBC.2018.8512873.
24. Smith, M. R., R. S. L. Chan, and P. Gordon, "Evaluating the accuracy of consensus nanosequencer squiggles generated by dynamic time warp barycentre averaging (DBA)," IEEE Engineering in Medicine and Biology, 233-237, IEEE, Berlin, 2019, https://doi.org/10.1109/EMBC.2019.8856460.
25. Smith, M., R. Chan, M. Khurram, and P. Gordon, "Evaluating the effectiveness of ensemble voting in improving the accuracy of consensus signals produced by various DTWA algorithms from step-current signals generated during nanopore sequencing," PLoS Computational Biology, Vol. 17, No. 9, e1009350, 2021, https://doi.org/10.1371/journal.pcbi.1009350.
doi:10.1371/journal.pcbi.1009350