Vol. 114
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-08-09
Multilayered Implantable Antenna Biosensor for Continuous Glucose Monitoring: Design and Analysis
By
Progress In Electromagnetics Research C, Vol. 114, 173-184, 2021
Abstract
This article reports a multilayer implantable biosensor for a continuous glucose monitoring system, tested on rats to determine the relationship between intravenous glucose level and resonance frequency of implant antenna sensor. An implantable antenna sensor with the volume 330.9 mm3 is tested in three rats as an animal model. This antenna biosensor operates in the Medical Implant Communication Service frequency band (402-405 MHz) with the simulated and measured maximum gains of -13.33 and -21.1 dB, respectively. The specific absorption rate obtained is within the standard limits. An oral glucose tolerance test is proposed to obtain the variation in blood glucose level in the animal's body during measurement. The resonance frequency shift and the corresponding blood glucose level are observed at a regular interval of 30 minutes. A frequency shift of 4.94 kHz per mg/dL is observed. Also, the results related to the reflection coefficient and the factors affecting sensor performance are discussed. The biosensor performance is validated using the proposed simple linear regression model.
Citation
Rahul B. Khadase, Anil Nandgaonkar, Brijesh Iyer, and Abhay E. Wagh, "Multilayered Implantable Antenna Biosensor for Continuous Glucose Monitoring: Design and Analysis," Progress In Electromagnetics Research C, Vol. 114, 173-184, 2021.
doi:10.2528/PIERC21052203
References

1. Williams, R., S. Karuranga, B. Malanda, P. Saeedi, A. Basit, S. Besancon, C. Bommer, et al. "Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas," Diabetes Research and Clinical Practice, Vol. 162, 108072, 2020.
doi:10.1016/j.diabres.2020.108072

2. Yilmaz, T., R. Foster, and Y. Hao, "Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3064-3075, 2014.
doi:10.1109/TAP.2014.2313139

3. Liu, X. Y., Z. T. Wu, Y. Fan, and E. M. Tentzeris, "A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 577-580, 2016.

4. Hassan, R. S., J. Lee, and S. Kim, "A minimally invasive implantable sensor for continuous wireless glucose monitoring based on a passive resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 124-128, 2019.
doi:10.1109/LAWP.2019.2955176

5. Camli, B., E. Kusakci, B. Lafci, S. Salman, H. Torun, and A. D. Yalcinkaya, "Cost-effective, microstrip antenna driven ring resonator microwave biosensor for biospecific detection of glucose," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 2, 404-409, 2017.
doi:10.1109/JSTQE.2017.2659226

6. Afroz, S., S. W. Thomas, G. Mumcu, and S. E. Saddow, "Implantable SiC based RF antenna biosensor for continuous glucose monitoring," 2013 IEEE SENSORS, 1-4, IEEE, 2013.

7. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model animals," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 334-337, 2010.
doi:10.1109/LAWP.2010.2048693

8. Kiourti, A., K. A. Psathas, P. Lelovas, N. Kostomitsopoulos, and K. S. Nikita, "In vivo tests of implantable antennas in rats: Antenna size and intersubject considerations," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1396-1399, 2013.
doi:10.1109/LAWP.2013.2286818

9. Liu, C., Y.-X. Guo, R. Jegadeesan, and S. Xiao, "In vivo testing of circularly polarized implantable antennas in rats," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 783-786, 2014.

10. Kiourti, A., K. A. Psathas, and K. S. Nikita, "Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges," Bioelectromagnetics, Vol. 35, No. 1, 1-15, 2014.
doi:10.1002/bem.21813

11. Garcia Miquel, A., S. Curto, N. V. Martínez, J. M. L. Villegas, F. M. Ramos, and P. Prakash, "Multilayered broadband antenna for compact embedded implantable medical devices: Design and characterization," Progress In Electromagnetics Research, Vol. 159, 1-13, 2017.
doi:10.2528/PIER16121507

12. Djellid, A., L. Pichon, K. Stavros, and F. Bouttout, "Miniaturization of a PIFA antenna for biomedical applications using artificial neural networks," Progress In Electromagnetics Research M, Vol. 70, 1-10, 2018.
doi:10.2528/PIERM18032705

13. Luan, Z., L. Liu, W.-H. Zong, Z. Jin, and S. Li, "Design of an implantable antenna operating at ISM band using magneto-dielectric material," Progress In Electromagnetics Research Letters, Vol. 82, 65-72, 2019.
doi:10.2528/PIERL18111202

14. Saha, P., D. Mitra, and S. K. Parui, "A circularly polarised implantable monopole antenna for biomedical applications," Progress In Electromagnetics Research C, Vol. 85, 167-175, 2018.
doi:10.2528/PIERC18051807

15. Sreenivas, C. and S. Laha, "Compact continuous non-invasive blood glucose monitoring using bluetooth," 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1-4, IEEE, 2019.

16. Omer, A. E., S. Gigoyan, G. Shaker, and S. Safavi-Naeini, "WGM-based sensing of characterized glucose-aqueous solutions at mm-waves," IEEE Access, Vol. 8, 38809-38825, 2020.
doi:10.1109/ACCESS.2020.2975805

17. Ribet, F., G. Stemme, and N. Roxhed, "Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system," Biomedical Microdevices, Vol. 20, No. 4, 1-10, 2018.
doi:10.1007/s10544-018-0349-6

18. Nguyen, V. H., A. Diallo, P. L. Thuc, R. Staraj, S. Lanteri, and G. F. Carle, "A miniature implanted antenna for UHF RFID applications," Progress In Electromagnetics Research C, Vol. 99, 221-238, 2020.
doi:10.2528/PIERC19102905

19. Villena Gonzales, W., A. T. Mobashsher, and A. Abbosh, "The progress of glucose monitoring --- A review of invasive to minimally and non-invasive techniques, devices and sensors," Sensors, Vol. 19, No. 4, 800, 2019.
doi:10.3390/s19040800

20. IEEE Standards Coordinating Committee, 28, "IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz," IEEE C95. 1-1991, 1992.