1. "5 critical 5G network deployment challenges --- Infovista,", https://www.infovista.com/blog/5g-network-deployment-challenges (consulté le févr. 13, 2021).
doi:10.1109/ISCAS.2014.6865398
2. "5G-PPP,", https://5g-ppp.eu/(consulté le févr. 13, 2021).
doi:10.1093/ietcom/e90-b.12.3514
3. R. & S. International "R&S®Cloud4Testing: 5G signal analysis,", https://www.rohde-schwarz.com/fr/produits/test-et-mesure/analyseurs-de-signaux-et-de-spectres/digital-products/cloud4testing/cloud4testing-5g-application-package 253876.html (consulté le févr.13, 2021).
doi:10.1109/TCSI.2007.900181
4. Agrawal, G., S. Aniruddhan, and R. K. Ganti, "Multi-band RF time delay element based on frequency translation," 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 1368-1371, 2014.
doi:10.1109/ACCESS.2020.2977100
5. Myoung, S.-S., B.-S. Kwon, Y.-H. Kim, and J.-G. Yook, "Effect of group delay in RF BPF on impulse radio systems," IEICE Trans. Commun., Vol. 90, No. 12, 3514-3522, 2007.
doi:10.1016/j.aeue.2020.153297
6. Groenewold, G., "Noise and group delay in active filters," IEEE Trans. Circuits Syst. Regul. Pap., Vol. 54, No. 7, 1471-1480, 2007.
doi:10.1109/TCSI.2011.2107251
7. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336-43343, 2020.
doi:10.1109/TMTT.2014.2320220
8. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," AEU-Int. J. Electron. Commun., Vol. 123, 153297, 2020.
doi:10.1049/el.2010.1797
9. Kandic, M. and G. E. Bridges, "Asymptotic limits of negative group delay in active resonator-based distributed circuits," IEEE Trans. Circuits Syst. Regul. Pap., Vol. 58, No. 8, 1727-1735, 2011.
doi:10.1049/iet-map.2015.0597
10. Wu, C.-T. M. and T. Itoh, "Maximally flat negative group-delay circuit: A microwave transversal filter approach," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 6, 1330-1342, 2014.
doi:10.1109/TCSI.2007.910538
11. Markley, L. and G. V. Eleftheriades, "Quad-band negative-refractive-index transmission-line unit cell with reduced group delay," Electron. Lett., Vol. 46, No. 17, 1206-1208, 2010.
12. Barroso, J. J., J. E. B. Oliveira, O. L. Coutinho, and U. C. Hasar, "Negative group velocity in resistive lossy left-handed transmission lines," IET Microwaves, Antennas & Propagation, Vol. 10, No. 7, 808-815, May 2016.
doi:10.1109/MMM.2020.3035862
13. Awwad, F. R., M. Nekili, V. Ramachandran, and M. Sawan, "On modeling of parallel repeater-insertion methodologies for SoC interconnects," IEEE Trans. Circuits Syst. Regul. Pap., Vol. 55, No. 1, 322-335, 2008.
14. Ravelo, B., "Recovery of microwave-digital signal integrity with NGD circuits," Photon Optoelectron, Vol. 2, No. 1, 8-16, 2013.
doi:10.1017/S1759078717001192
15. Xiao, J.-K., Q.-F. Wang, and J.-G. Ma, "Negative group delay circuits and applications: Feedforward amplifiers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16-32, Feb. 2021.
doi:10.1149/1945-7111/abc656
16. Abdulkarim, Y. I., H. N. Awl, F. F. Muhammadsharif, M. Karaaslan, R. H. Mahmud, S. O. Hasan, Ö. Işık, H. Luo, and S. Huang, "A low-profile antenna based on single-layer metasurface for Ku-band applications," International Journal of Antennas and Propagation, Vol. 2020, Article ID 8813951, 8 pages, 2020.
doi:10.1149/2.1491912jes
17. Akgol, O., O. Altintas, E. Unal, et al. "Linear to left-and right-hand circular polarization conversion by using a metasurface structure," Int. Journal of Microwave and Wireless Technologies, Vol. 10, No. 1, 133-138, 2008.
doi:10.1109/JSEN.2017.2747764
18. Altıntaş, O., M. Aksoy, E. Ünal, M. Karaaslan, and C. Sabah, "Operating frequency reconfiguration study for a split ring resonator based microfluidic sensor," J. Electrochem. Soc., Vol. 167, No. 14, 147512, Nov. 2020.
doi:10.1109/TAP.2015.2408364
19. Bakır, M., S. Dalgaç, M. Karaaslan, F. Karadag, O. Akgol, E. Unal, T. Depçi, and C. Sabah, "A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial," J. Electrochem. Soc., Vol. 166, B1044-B1052, 2019.
doi:10.23919/EuMC.2019.8910773
20. Velez, P., L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martin, "Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids," IEEE Sens. J., Vol. 17, 6589-6598, 2017.
doi:10.1109/LMWC.2017.2745487
21. Mirzaei, H. and G. V. Eleftheriades, "Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-foster elements synthesized by negative-group-delay networks," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 1997-2010, May 2015.
doi:10.1016/j.aeue.2013.09.003
22. Zhu, M. and C.-T. M.Wu, "Reconfigurable series feed network for squint-free antenna beamforming using distributed amplifier-based negative group delay circuit," 2019 49th European Microwave Conference (EuMC), 256-259, 2019.
doi:10.1051/epjap/2012110374
23. Zhang, T., R. Xu, and C.-T. M. Wu, "Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 10, 921-923, 2017.
doi:10.1002/cta.1902
24. Ravelo, B., "Distributed NGD active circuit for RF-microwave communication," AEU-Int. J. Electron. Commun., Vol. 68, No. 4, 282-290, 2014.
doi:10.23919/URSIRSB.2017.8409424
25. Ravelo, B., "Delay modeling of high-speed distributed interconnect for the signal integrity prediction," Eur. Phys. J. Appl. Phys., Vol. 57, No. 3, 31002, 2012.
doi:10.1109/APMC.2013.6695137
26. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," Int. J. Circuit Theory Appl., Vol. 42, No. 10, 1016-1032, 2014.
doi:10.1109/LMWC.2017.2711572
27. Ravelo, B., "On low-pass, high-pass, bandpass, and stop-band NGD RF passive circuits," URSI Radio Sci. Bull., Vol. 2017, No. 363, 10-27, 2017.
doi:10.1109/LMWC.2014.2322445
28. Wu, C.-T. M., S. Gharavi, and T. Itoh, "Negative group delay circuit based on a multisection asymmetrical directional coupler," 2013 Asia-Pacic Microwave Conference Proceedings (APMC), 333-334, 2013.
doi:10.1109/TMTT.2014.2345352
29. Qiu, L.-F., L.-S. Wu, W.-Y. Yin, and J.-F. Mao, "Absorptive bandstop filter with prescribed negative group delay and bandwidth," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 7, 639-641, Jul. 2017.
doi:10.1049/iet-map.2014.0351
30. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 8, 521-523, 2014.
doi:10.1109/ACCESS.2017.2761890
31. Chaudhary, G. and Y. Jeong, "Low signal-attenuation negative group-delay network topologies using coupled lines," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 10, 2316-2324, 2014.
doi:10.1049/el.2017.0328
32. Chaudhary, G. and Y. Jeong, "Transmission-type negative group delay networks using coupled line doublet structure," IET Microw. Antennas Propag., Vol. 9, No. 8, 748-754, 2015.
doi:10.13164/re.2018.1070
33. Shao, T., Z. Wang, S. Fang, H. Liu, and S. Fu, "A compact transmission-line self-matched negative group delay microwave circuit," IEEE Access, Vol. 5, 22836-22843, 2017, doi: 10.1109/ACCESS.2017.2761890.
34. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electron. Lett., Vol. 53, No. 7, 476-478, févr, 2017, doi: 10.1049/el.2017.0328.
35. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radioengineering, Vol. 27, No. 4, 1070-1076, Sept. 2018, doi: 10.13164/re.2018.1070.
36. Ravelo, B. and F. Wan, "NGD synthesizer with feedback hybrid coupler," 2019 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, Sept. 2019, doi: 10.23919/RA-DIO46463.2019.8968893.
doi:10.1109/TMTT.2014.2320220
37. Ravelo, B., "Hybrid coupler-based NGD circuit," Negat. Group Delay Devices Concepts Appl., 147-172, Nov. 2018, doi: 10.1049/PBCS043E_ch5.
38. Wu, C. M., S. Gharavi, and T. Itoh, "Negative group delay circuit based on a multisection asymmetrical directional coupler," 2013 Asia-Pacic Microwave Conference Proceedings (APMC), 333-334, Nov. 2013, doi: 10.1109/APMC.2013.6695137.
doi:10.1109/22.275248
39. Wu, C. M. and T. Itoh, "Maximally flat negative group-delay circuit: A microwave transversal filter approach," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 6, 1330-1342, Jun. 2014, doi: 10.1109/TMTT.2014.2320220.
doi:10.1109/TMTT.2016.2604316
40. Hammerstad, E. and O. Jensen, "Accurate models for microstrip computer-aided design," 1980 IEEE MTT-S International Microwave Symposium Digest, 407-409, 1980.
41. Frickey, D. A., "Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 2, 205-211, 1994.
42. Ravelo, B., "Theory of coupled line coupler-based negative group delay microwave circuit," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 11, 3604-3611, Nov. 2016, doi: 10.1109/TMTT.2016.2604316.