Vol. 112
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-04-30
Enhanced Ultra-Wide Band Multistage Rectifier for Pulsed Signal Power Transmission
By
Progress In Electromagnetics Research C, Vol. 112, 113-125, 2021
Abstract
This paper presents a multi-sections broad-band radio-frequency (RF) to direct-current (dc) power rectifier for pulsed signal transfer. The power transfer using a pulse allows to use a signal with low power spectral density. The optimal distributed configuration with critical parameters is studied to enhance the efficiency over broadband frequency and wide power range. A five stage distributed RF-dc converter arrangement with micro-strip transmission line ensures the power harvesting from 100 MHz to 11 GHz. The designed and fabricated circuit is characterized at multi-frequencies of ultra-wide band (UWB). The distributed harvester significantly improves the detected voltage over a wide bandwidth compared to conventional RF detectors. The achieved efficiency with optimized parameters is 48% with five-stage harvester. A maximum dc output of 956 mV is reached at 8 dBm of input power of sinusoidal single tone signal at 1 GHz of frequency. The designed prototype is associated with a square wave signal to show the circuit potential in terms of power transfer. The output voltage can be controlled with input signal level, frequency as well as the pulse width. For the power transfer circuit, 996 mV of maximum dc output voltage is reached for 1 V of input amplitude at 1 GHz with duty cycle of 50%. The efficiency increases significantly with duty cycle ratio of the input signal. The power harvester associated with a UWB antenna confirms the benefit of using a square wave signal in the case of power harvesting or transfer.
Citation
Ahmed Moulay, and Tarek Djerafi, "Enhanced Ultra-Wide Band Multistage Rectifier for Pulsed Signal Power Transmission," Progress In Electromagnetics Research C, Vol. 112, 113-125, 2021.
doi:10.2528/PIERC21032904
References

1. Din, N. M., C. K. Chakrabarty, A. Bin Ismail, K. K. Devi, and W.-Y. Chen, "Design of RF energy harvesting system for energizing low power devices," Progress In Electromagnetics Research, Vol. 132, 49-69, 2012.
doi:10.2528/PIER12072002

2. El Badawe, M. and O. M. Ramahi, "Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting," Progress In Electromagnetics Research, Vol. 161, 35-40, 2018.
doi:10.2528/PIER18011003

3. Shen, S., Y. Zhang, C. Chiu, and R. Murch, "A triple-band high-gain multibeam ambient RF energy harvesting system utilizing hybrid combining," IEEE Transactions on Industrial Electronics, Vol. 67, No. 11, 9215-9226, 2020.
doi:10.1109/TIE.2019.2952819

4. Du, Z. and X. Y. Zhang, "High-efficiency single- and dual-band rectifiers using a complex impedance compression network for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 65, No. 6, 5012-5022, 2018.
doi:10.1109/TIE.2017.2772203

5. Donelli, M., P. Rocca, and F. Viani, "Design of a WPT system for the powering of wireless sensor nodes: Theoretical guidelines and experimental validation," Wireless Power Transfer, Vol. 3, No. 1, 15-23, 2016.
doi:10.1017/wpt.2015.20

6. Liu, C., F. Tan, H. Zhang, and Q. He, "A novel single-diode microwave rectifier with a series band-stop structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 2, 600-606, 2017.
doi:10.1109/TMTT.2016.2626286

7. Kawasaki, S., K. Ryoko, F. Yuki, N. Toshihiro, Y. Satoshi, N. Kenjiro, and S. Harunobu, "C-band energy harvester by Si RFICs with GaN diodes for microwave power transfer," 2017 IEEE International Symposium on Radio-Frequency Integration Technology, RFIT 2017, 147-149, Seoul, South Korea, 2017.

8. Liu, Z., Z. Zhong, and Y. X. Guo, "Enhanced dual-band ambient RF energy harvesting with ultra-wide power range," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 9, 630-632, 2015.
doi:10.1109/LMWC.2015.2451397

9. Niotaki, K., A. Georgiadis, and A. Collado, "Dual-band rectifier based on resistance compression networks," IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 1-3, IEEE, Tampa, FL, USA, 2014.

10. Shariati, N., J. R. Scott, D. Schreurs, and K. Ghorbani, "Multitone excitation analysis in RF energy harvesters-considerations and limitations," IEEE Internet of Things Journal, Vol. 5, No. 4, 2804-2816, 2018.
doi:10.1109/JIOT.2018.2828978

11. Zeng, Y., B. Clerckx, and R. Zhang, "Communications and signals design for wireless power transmission," IEEE Transactions on Communications, Vol. 65, No. 5, 2264-2290, 2017.
doi:10.1109/TCOMM.2017.2676103

12. Henning, F. H., Transmission of Information by Orthogonal Functions, Vol. 87, No. 4, Springer, 2012.

13. Ross, G. F. and M. Lexington, "Transmission and reception system for generating and receiving base-band duration pulse signals for short base-band pulse communication system,", 912-914, 1973.

14. Albreem, M. A., "5G wireless communication systems: Vision and challenges," I4CT 2015 — 2015 2nd International Conference on Computer, Communications, and Control Technology, Art Proceeding, No. I4ct, 493-497, IEEE, Kuching, Sarawak, Malaysia, 2015.

15. Zheng, S., W. Liu, and Y. Pan, "Design of an ultra-wideband high-efficiency rectifier for wireless power transmission and harvesting applications," IEEE Transactions on Industrial Informatics, Vol. 15, No. 6, 3334-3342, 2019.
doi:10.1109/TII.2018.2874460

16. Moulay, A. and T. Djerafi, "Multi-stage schottky diode power harvester for UWB application," IEEE Wireless Power Transfer Conference (WPTC), 8-11, Montreal, Canada, 2018.

17. Boaventura, A. S. and N. B. Carvalho, "Maximizing DC power in energy harvesting circuits using multisine excitation," IEEE MTT-S International Microwave Symposium Digest, Vol. 1, No. 1, 1-4, Baltimore, MD, USA, 2011.

18. Bahl, I. J., Fundamentals of RF and Microwave Transistor Amplifiers, John Wiley & Sons, Hoboken, New Jersey, 2009.

19. Jose Carlos, P. and N. B. Carvalho, Intermodulation Distortion in Microwave and Wireless Circuits, Artech House, 2003.

20. Skyworks "SM76XX Datasheet. Surface mount mixer and detector Schottky diodes," Tech. Rep., Skyworks, 2015.

21. Yang, Y. L., C. L. Tsai, C. W. Yang, and C. L. Yang, "Using pulse width and waveform modulation to enhance power conversion efficiency under constraint of low input power," Asia-Pacific Microwave Conference Proceedings, 400-402, APMC, 2012.

22. Metivier, R., "Method for converting a PWM output to an analog output when using hall-effect sensor ICs," Allegro MicroSystems, No. 296094-AN, 2013.

23. Sinar, D. and G. Knopf, "Printed graphene derivative circuits as passive electrical filters," Nanomaterials, Vol. 8, No. 2, 123, 2018.
doi:10.3390/nano8020123