Vol. 112
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-05-05
A Dual-Band, Miniaturized, AMC-Based Wearable Antenna for Health Monitoring Applications
By
Progress In Electromagnetics Research C, Vol. 112, 165-177, 2021
Abstract
A dual-band wearable antenna operating at 2.45 GHz and 5.80 GHz with compact Artificial Magnetic Conductor (AMC) plane is proposed in this paper. The design is based on a U-shaped printed monopole antenna operating in the Industrial, Science, Medical (ISM) bands, and it is integrated with a square looped AMC plane which can reduce the overall size of the antenna system and realize miniaturization. The U-shaped monopole antenna is miniaturized by folding its arms, and its resonant frequency can be tuned easily by adjusting the length of two branches. The AMC unit, which is composed of concentric square double rings, realizes dual-band resonance. Meanwhile, a crossed patch is loaded into the inner ring to increase the electromagnetic coupling and reduce the resonance frequency of the two rings, thus miniaturizing the AMC unit. Therefore, the total size of the AMC plane which contains 3×3 elements is only 59.1 mm × 59.1 mm. Specific Absorption Rate (SAR) is examined by loading a three-layer human body tissue under the AMC antenna, and the simulation results show that SAR value is only 0.018 W/kg, which is far below the Institute of Electrical and Electronics Engineer (IEEE) standard. Finally, a prototype of the proposed antenna was fabricated and tested, and the experimental results agree well with the simulation responses.
Citation
Bo Yin, Ming Ye, Youhai Yu, and Jing Gu, "A Dual-Band, Miniaturized, AMC-Based Wearable Antenna for Health Monitoring Applications," Progress In Electromagnetics Research C, Vol. 112, 165-177, 2021.
doi:10.2528/PIERC21032202
References

1. Salonen, P. and J. Rantanen, "A dual-band and wide-band antenna on flexible substrate for smart clothing," 27th Annual Conference of the IEEE Industrial Electronics Society, IECON'01, 125-130, 2001.
doi:10.1109/IECON.2001.976466

2. Gao, G., C. Yang, B. Hu, R. Zhang, and S. Wang, "A wide-bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4206-4211, Mar. 2019.
doi:10.1109/TAP.2019.2905976

3. Wang, F., T. Arslan, and , "A wearable ultra-wideband monopole antenna with flexible artificial magnetic conductor," Loughborough Antennas & Propagation Conference, LAPC, 1-5, 2016.

4. Atanasov, N. T., G. L. Atanasova, A. K. Stefanov, and I. I. Nedialkov, "A wearable, low-profile, fractal monopole antenna integrated with a reflector for enhancing antenna performance and SAR reduction," IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, IMWS-AMP, 67-69, 2019.
doi:10.1109/IMWS-AMP.2019.8880142

5. Asif, S. M., A. Iftikhar, B. D. Braaten, D. L. Ewert, and K. Maile, "A wide-band tissue numerical model for deeply implantable antennas for RF-powered leadless pacemakers," IEEE Access, Vol. 7, 31031-31042, 2019.
doi:10.1109/ACCESS.2019.2902981

6. Amini, A., H. Oraizi, and M. A. Chaychizadeh, "Miniaturized UWB log-periodic square fractal antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1322-1325, Mar. 2015.
doi:10.1109/LAWP.2015.2411712

7. Deng, D., L. Wang, Z. Luo, B. Yan, L. Feng, and H. Zheng, "Design of miniaturized WLAN notched ultra-wideband microstrip antenna," International Symposium on Antennas, Propagation and EM Theory, ISAPE, 291-294, 2016.

8. Hong, T., S. Gong, Y. Liu, W. Jiang, and J. Du, "Miniaturized circularly polarized microstrip antenna by spirally slotted," IEEE 4th Asia-Pacific Conference on Antennas and Propagation, APCAP, 585-586, 2015.

9. Hamouda, Z., J. Wojkiewicz, A. A. Pud, L. Kone, S. Bergheul, and T. Lasri, "Magnetodielectric nanocomposite polymer-based dual-band flexible antenna for wearable applications," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3271-3277, Jul. 2018.
doi:10.1109/TAP.2018.2826573

10. Li, X., Y. C. Jiao, and Z. Li, "Wideband low-profile CPW-fed slot-loop antenna using an artificial magnetic conductor," Electronics Letters, Vol. 54, No. 11, 673-674, May 2018.
doi:10.1049/el.2018.0456

11. Mersani, A., L. Osman, and J. M. Ribero, "Performance of dual-band AMC antenna for wireless local area network applications," IET Microwaves Antennas and Propagation, Vol. 12, No. 6, 872-878, May 2018.
doi:10.1049/iet-map.2017.0476

12. Lin, M., Y. Huang, and C. G. Hsu, "Design a dual-band high-impedance surface structure for electromagnetic protection in WLAN applications," International Symposium on Electromagnetic Compatibility, 525-528, 2014.

13. Wang, M. J., Z. Yang, J. F. Wu, et al. "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Trans. Antennas Propag., Vol. 66, No. 6, Jun. 2018.

14. Ahmad, A., F. Faisal, S. Khan, S. Ullah, and U. Ali, "Performance analysis of a wearable and dual band planar antenna using a mushroom-like electromagnetic bandgap (EBG) ground plane," International Conference on Open Source Systems & Technologies, ICOSST, 24-29, 2015.

15. Jiang, Z. H., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices," IEEE Trans. Antennas Propag., Vol. 62, No. 8, Aug. 2014.
doi:10.1109/TAP.2014.2327650

16. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2550-2553, Jul. 2017.

17. Yading, L., K. Esselle, A. Weily, and Y. Ge, "A dual-band planar compact artificial magnetic conductor," IEEE Antennas and Propagation Society International Symposium, 451-454, 2005.
doi:10.1109/APS.2005.1552848

18. Velan, S., E. F. Sundarsingh, A. K. Sarma, et al. "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 249-252, Sep. 2015.
doi:10.1109/LAWP.2014.2360710

19. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. Antennas Propag., Vol. 57, No. 4, Apr. 2009.
doi:10.1109/TAP.2009.2014527

20. Kim, S., Y. Ren, H. Lee, A. Rida, S. Nikolaou, and M. M. Tentzeris, "Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 663-666, Jun. 2012.
doi:10.1109/LAWP.2012.2203291

21. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas Propag., Vol. 62, No. 12, Dec. 2014.
doi:10.1109/TAP.2014.2359194

22. Abdu, A., H. X. Zheng, J. H. Adamu, and M. J. Wang, "CPW-fed flexible monopole antenna with H and two concentric C slots on textile substrate, backed by EBG for WBAN," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 7, Sep. 2018.
doi:10.1002/mmce.21505