Vol. 112
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-05-02
Wide-Band Log-Periodic Microstrip Antenna with Defected Ground Structure for C-Band Applications
By
Progress In Electromagnetics Research C, Vol. 112, 127-137, 2021
Abstract
The manuscript presents a log-periodic microstrip antenna with a defective ground structure (LPMADGS). The antenna is simulated, designed, and validated for C-band applications. The design of the antenna consists of three layers with upper most layer consisting of log-periodic, copper patches with a thickness of 0.035 mm; the middle layer is a 2 mm thick dielectric layer of FR-4 substrate; and the bottom layer is a defected ground structure (concentric ring resonators of 0.035 mm thickness). The suggested antenna design is simulated with a complete ground plane, without ground plane, and with a defective ground plane. The proposed antenna with optimized design is fabricated by wet etched method. The simulated results are approximately similar to the experimentally measured results. The experimentally measured results show transmission peaks at 7.65 GHz and 7.90 GHz. The resonating effect of log-periodic patches with a defected ground structure results in wide-band of 0.91 GHz (-10 dB bandwidth). The proposed antenna structure exhibits a wide bandwidth transmission which mostly resonates in frequency range that lies in C-band. It has future applications for mobile as well as wireless communication.
Citation
Kunal Krishna Upadhyay, Alkesh Agrawal, and Mukul Misra, "Wide-Band Log-Periodic Microstrip Antenna with Defected Ground Structure for C-Band Applications," Progress In Electromagnetics Research C, Vol. 112, 127-137, 2021.
doi:10.2528/PIERC21031106
References

1. Gupta, S. D. and M. C. Srivastava, "Design of frequency agile multidielectric microstrip antenna for airborne applications," International Journal of Microwave and Optical Technology (IJMOT), Vol. 5, 257-266, 2010.

2. Wu, J., J. Yu, and Q. Tao, "Design of a missile-borne conformal microstrip navigation antenna," MATEC Web of Conferences, Vol. 232, 04080, 2018.
doi:10.1051/matecconf/201823204080

3. Jan, J. Y. and J. W. Su, "Bandwidth enhancement of a printed wide-slot antenna with a rotated slot," IEEE Transactions on Antennas and Propagation, Vol. 53, 2111-2114, 2005.
doi:10.1109/TAP.2005.848518

4. Liu, Y. F., K. L. Lau, Q. Xue, and C. H. Chen, "Experimental studies of printed wide-slot antenna for wide-band applications," IEEE Antennas Wireless Propagation Letters, Vol. 3, 273-275, 2004.
doi:10.1109/LAWP.2004.837510

5. Chen, W. S. and K. Y. Ku, "Band-rejected design of printed open slot antenna for WLAN/WiMAX operation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 1163-1169, 2008.
doi:10.1109/TAP.2008.919192

6. Chattha, H. T., M. Hanif, X. Yang, Q. H. Abbasi, and I. E. Rana, "Frequency reconfigurable patch antenna for 4G LTE application," Progress In Electromagnetics Research M, Vol. 69, 1-13, 2018.
doi:10.2528/PIERM18022101

7. Khattak, M. I., A. Sohail, U. Khan, Z. Ullah, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401

8. Alieldin, A., Y. Huang, S. J. Boyes, and M. Stanley, "A reconfigurable broadband dual-mode dual-polarized antenna for sectorial/omnidirectional mobile base stations," Progress In Electromagnetics Research, Vol. 163, 1-13, 2018.
doi:10.2528/PIER18050206

9. Alqadami, A. S. M., M. F. Jamlos, I. Islam, P. J. Soh, R. Mamat, K. A. Khairi, and A. Narbudowicz, "Multi-band antenna array based on double negative metamaterial for multi automotive applications," Progress In Electromagnetics Research, Vol. 159, 27-37, 2017.
doi:10.2528/PIER16091203

10. Naik, K. K. and P. A. Vijaya Sri, "Design of hexadecagon circular patch antenna with DGS at Ku band for satellite communications," Progress In Electromagnetics Research M, Vol. 63, 163-173, 2018.
doi:10.2528/PIERM17092205

11. Selvi, N. T., R. Pandeeswari, and P. N. T. Selvan, "An inset-fed rectangular microstrip patch antenna with multiple split ring resonator loading for WLAN and RF-ID applications," Progress In Electromagnetics Research C, Vol. 81, 41-52, 2018.
doi:10.2528/PIERC17110102

12. Saroj, A. K., M. G. Siddiqui, M. Kumar, and J. Ansari, "Design of multiband quad-rectangular shaped microstrip antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 59, 213-221, 2017.
doi:10.2528/PIERM17071003

13. Jabar, A. A. S. A. and D. K. Naji, "Design of miniaturized quad-band dual-arm spiral patch antenna for RFID, WLAN and WiMAX applications," Progress In Electromagnetics Research C, Vol. 91, 97-113, 2019.
doi:10.2528/PIERC19011706

14. Khajepour, S., M. S. Ghaffarian, and G. Moradi, "Design of novel multiband folded printed quadrifilar helical antenna for GPS/WLAN applications," IEEE Electronics Letters, Vol. 53, No. 2, 58-60, 2017.
doi:10.1049/el.2016.3889

15. Sun, X., G. Zeng, H.-C. Yang, Y. Li, X.-J. Liao, and L. Wang, "Design of an edge-fed quad-band slot antenna for GPS/WiMAX/WLAN applications," Progress In Electromagnetics Research Letters, Vol. 28, 111-120, 2012.
doi:10.2528/PIERL11080407

16. Yu, J., Y. Sun, H. Zhu, F. Li, and Y. Fang, "Stacked-patch dual-band & dual-polarized antenna with broadband baluns for WiMAX & WLAN applications," Progress In Electromagnetics Research M, Vol. 68, 41-52, 2018.
doi:10.2528/PIERM18022501

17. Liu, C. S., C. N. Chiu, and S. M. Deng, "A compact disc-slit monopole antenna for mobile devices," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 251-254, 2008.

18. Kumar, H. and G. Kumar, "A broadband planar modified quasi-Yagi using log-periodic antenna," Progress In Electromagnetics Research Letters, Vol. 73, 23-30, 2018.
doi:10.2528/PIERL17102005

19. Dykaar, D. R., B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, "Log-periodic antennas for pulsed terahertz radiation," Appl. Phys. Lett., Vol. 59, 262, 1991.
doi:10.1063/1.105615

20. Haraz, O. M., "Millimeter-wave printed dipole array antenna loaded with a low-cost dielectric lens for high-gain applications," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 41, No. 3, 225-244, 2020.
doi:10.1007/s10762-019-00654-5

21. Haraz, O. M., A. R. Sebak, and S. Alshebeili, "Study the effect of using low-cost dielectric lenses with printed log-periodic dipole antennas for millimeter-wave applications," International Journal of Antennas and Propagation, Vol. 2015, 1-7, 2015.
doi:10.1155/2015/209430

22. Haraz, O. M., S. A. Alshebeili, and A.-R. Sebak, "Low-cost high gain printed log-periodic dipole array antenna with dielectric lenses for V-band applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 6, 541-552, 2015.
doi:10.1049/iet-map.2014.0319

23. Hasan, M. M., M. R. I. Faruque, and M. T. Islam, "Dual band metamaterial antenna for LTE/Bluetooth/WiMAX system," Scientific Reports (Nature), Vol. 8, No. 1240, 1-17, 2018.

24. Kushwaha, N. and R. Kumar, "An UWB fractal antenna with defected ground structure and Swastika shape electromagnetic band gap," Progress In Electromagnetics Research B, Vol. 52, 383-403, 2013.
doi:10.2528/PIERB13051509

25. Agrawal, A., M. Misra, and A. Singh, "Oblique incidence and polarization insensitive multiband metamaterial absorber with quad paired concentric continuous ring resonators," Progress In Electromagnetics Research M, Vol. 60, 33-46, 2017.
doi:10.2528/PIERM17061302

26. Milligan, T. A., Modern Antenna Design, 2nd Edition, John Wiley & Sons Inc., IEEE Press, New Jersey, 2005.
doi:10.1002/0471720615

27. Anguera, J., C. Punte, and C. Borja, "A procedure to design stacked microstrip patch antennas based on a simple network model," Microwave and Optical Technology Letters, Vol. 30, 149-151, 2001.
doi:10.1002/mop.1248

28. Jain, S. K. and S. Jain, "Performance analysis of coaxial fed stacked patch antennas," Frequenz Journal of RF-Engineering and Telecommunication, Vol. 68, No. 1–2, 7-18, 2014.

29. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physics Review Letters], Vol. 84, No. 10, 4184-4187, 1999.

30. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114