1. Wang, D., X. Wang, and S.-Y. Jung, "Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2295-2298, 2013.
doi:10.1109/TMAG.2013.2242454
2. Chen, Q., G. Xu, F. Zhai, and G. Liu, "A novel Spoke-type PM motor with auxiliary salient poles for low torque pulsation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4762-4773, 2020.
doi:10.1109/TIE.2019.2924864
3. Liu, F., L. Cheng, M. Wang, G. Qiao, P. Zheng, and H. Yang, "Comparative study of hybrid-PM variable-flux machines with different series PM configurations," AIP Advances, Vol. 9, No. 12, 19-25, 2019.
4. Afinowi, I. A. A., Z. Q. Zhu, Y. Guan, J. C. Mipo, and P. Farah, "Switched-flux machines with hybrid NdFeB and ferrite magnets," Compel the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 35, No. 2, 456-472, 2016.
doi:10.1108/COMPEL-03-2015-0112
5. Liu, X. P., M. Wang, D. Chen, and Q. H. Xie, "A variable flux axial field permanent magnet synchronous machine with a novel mechanical device," IEEE Transactions on Magnetics, Vol. 51, No. 11, 5876-5887, 2015.
6. Aljehaimi, A. M. and P. Pillay, "Operating envelopes of the variable-flux machine with positive reluctance torque," IEEE Transactions on Transportation Electrification, Vol. 4, No. 3, 707-719, 2018.
doi:10.1109/TTE.2018.2828385
7. Ibrahim, M., L. Masisi, and P. Pillay, "Design of variable flux permanent-magnet machine for reduced inverter rating," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3666-3674, 2015.
doi:10.1109/TIA.2015.2423661
8. Hua, H., Z. Q. Zhu, A. Pride, R. P. Deodhar, and T. Sasaki, "Comparison of end effect in series and parallel hybrid permanent-magnet variable-flux memory machines," IEEE Transactions on Industry Applications, Vol. 55, No. 3, 2529-2537, 2019.
doi:10.1109/TIA.2018.2889979
9. Limsuwan, N., T. Kato, K. Akatsu, and R. D. Lorenz, "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Transactions on Industry Applications, Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482
10. Limsuwan, N., Y. Shibukawa, D. D. Reigosa, and R. D. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2004-2012, 2011.
doi:10.1109/TIA.2011.2161534
11. Kato, T., N. Limsuwan, C. Y. Yu, K. Akatsu, and R. D. Lorenz, "Rare earth reduction using a novel variable magnetomotive force flux-intensified IPM machine," IEEE Transactions on Industry Applications, Vol. 50, No. 3, 1748-1756, 2014.
doi:10.1109/TIA.2013.2283314
12. Liu, F. J., X. Y. Zhu, W. Y. Wu, L. Quan, Z. X. Xiang, and Y. Z. Hua, "Design and analysis of an interior permanent magnet synchronous machine with multiflux-barriers based on flux-intensifying effect," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1949-1964, 2018.
13. Kim, K. C., K. Kim, H. J. Kim, and J. Lee, "Demagnetization analysis of permanent magnets according to rotor types of interior permanent magnet synchronous motor," IEEE Transactions on Magnetics, Vol. 45, No. 6, 2799-2802, 2009.
doi:10.1109/TMAG.2009.2018661
14. Zhao, X. K., B. Q. Kou, L. Zhang, and H. Q. Zhang, "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, No. 54, 182249-182259, 2020.
doi:10.1109/ACCESS.2020.3026841
15. Zhu, X. Y., W. Y. Wu, S. Yang, Z. X. Xiang, and L. Quan, "Comparative design and analysis of new type of flux-intensifying interior permanent magnet motors with different Q-axis rotor flux barriers," IEEE Transactions on Energy Conversion, Vol. 33, No. 4, 2260-2269, 2018.
doi:10.1109/TEC.2018.2837119
16. Ngo, K., M. F. Hsieh, and A. Huynh, "Torque enhancement for a novel flux intensifying PMa- SynRM using surface-inset permanent magnet," IEEE Transactions on Magnetics, Vol. 55, No. 7, 253-260, 2019.
doi:10.1109/TMAG.2019.2897022
17. Sun, A., et al., "Magnetization and performance analysis of a variable-flux flux-intensifying interior permanent magnet machine," 2015 IEEE International Electric Machines & Drives Conference (IEMDC), 369-375, 2015.
doi:10.1109/IEMDC.2015.7409086
18. Chen, J., J. Li, and R. Qu, "Maximum-torque-per-ampere and magnetization-state control of a variable-flux permanent magnet machine," IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 1158-1169, 2018.
doi:10.1109/TIE.2017.2733494
19. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016.
20. Zhang, L., X. Zhu, J. Gao, and Y. Mao, "Design and analysis of new five-phase flux-intensifying fault-tolerant interior-permanent-magnet motor for sensorless operation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 6055-6065, 2020.
doi:10.1109/TIE.2019.2955407
21. Huang, C. Z., Z. X. Zhang, X. P. Liu, J. J. Xiao, and H. Xu, "Finite element analysis and dynamics simulation of mechanical flux-varying PM machines with auto-rotary PMs," Journal of Power Electronics, Vol. 19, No. 3, 744-750, 2019.
22. Liu, X., T. Sun, Y. Zou, C. Huang, and J. Liang, "Modelling and analysis of a novel mechanical-variable- flux IPM machine with rotatable magnetic poles," IET Electric Power Applications, Vol. 14, No. 11, 2171-2178, 2020.
doi:10.1049/iet-epa.2020.0171
23. Morimoto, E., N. Niguchi, and K. Hirata, "Variable flux permanent magnet motor utilizing centrifugal force," International Journal of Applied Electromagnetics and Mechanics, Vol. 52, No. 1–2, 563-569, 2016.
doi:10.3233/JAE-162065