Vol. 111
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-04-09
Comparative Design and Analysis of a New Type of Mechanical-Variable-Flux Flux-Intensifying Interior Permanent Magnet Motor
By
Progress In Electromagnetics Research C, Vol. 111, 225-239, 2021
Abstract
In this paper, a novel mechanical-variable-flux flux-intensifying interior permanent magnet (MVF-FI-IPM) motor is proposed, which employs a mechanical flux-adjusting device and owns the characteristic of Ld>Lq. The magnetic poles can be rotated by the mechanical device to vary the leakage flux and adjust the angle of magnetization direction relative to the d-axis. The characteristic of Ld>Lq is achieved through the adoption of surface flux barriers. The topology structure and operation principle of the machine are introduced. Then, the operation of the mechanical flux-adjusting device is analyzed by virtual prototype technology. Based on the two-dimensional finite element method (FEM), the electromagnetic characteristics of the proposed motor and FI-IPM motor are compared. Finally, the results show the proposed motor with a better flux-weakening capability and a lower risk of irreversible demagnetization than that of the FI-IPM motor.
Citation
Xiping Liu, Gaosheng Guo, Wenjian Zhu, and Longxin Du, "Comparative Design and Analysis of a New Type of Mechanical-Variable-Flux Flux-Intensifying Interior Permanent Magnet Motor," Progress In Electromagnetics Research C, Vol. 111, 225-239, 2021.
doi:10.2528/PIERC21022305
References

1. Wang, D., X. Wang, and S.-Y. Jung, "Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2295-2298, 2013.
doi:10.1109/TMAG.2013.2242454

2. Chen, Q., G. Xu, F. Zhai, and G. Liu, "A novel Spoke-type PM motor with auxiliary salient poles for low torque pulsation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4762-4773, 2020.
doi:10.1109/TIE.2019.2924864

3. Liu, F., L. Cheng, M. Wang, G. Qiao, P. Zheng, and H. Yang, "Comparative study of hybrid-PM variable-flux machines with different series PM configurations," AIP Advances, Vol. 9, No. 12, 19-25, 2019.

4. Afinowi, I. A. A., Z. Q. Zhu, Y. Guan, J. C. Mipo, and P. Farah, "Switched-flux machines with hybrid NdFeB and ferrite magnets," Compel the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 35, No. 2, 456-472, 2016.
doi:10.1108/COMPEL-03-2015-0112

5. Liu, X. P., M. Wang, D. Chen, and Q. H. Xie, "A variable flux axial field permanent magnet synchronous machine with a novel mechanical device," IEEE Transactions on Magnetics, Vol. 51, No. 11, 5876-5887, 2015.

6. Aljehaimi, A. M. and P. Pillay, "Operating envelopes of the variable-flux machine with positive reluctance torque," IEEE Transactions on Transportation Electrification, Vol. 4, No. 3, 707-719, 2018.
doi:10.1109/TTE.2018.2828385

7. Ibrahim, M., L. Masisi, and P. Pillay, "Design of variable flux permanent-magnet machine for reduced inverter rating," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3666-3674, 2015.
doi:10.1109/TIA.2015.2423661

8. Hua, H., Z. Q. Zhu, A. Pride, R. P. Deodhar, and T. Sasaki, "Comparison of end effect in series and parallel hybrid permanent-magnet variable-flux memory machines," IEEE Transactions on Industry Applications, Vol. 55, No. 3, 2529-2537, 2019.
doi:10.1109/TIA.2018.2889979

9. Limsuwan, N., T. Kato, K. Akatsu, and R. D. Lorenz, "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Transactions on Industry Applications, Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482

10. Limsuwan, N., Y. Shibukawa, D. D. Reigosa, and R. D. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2004-2012, 2011.
doi:10.1109/TIA.2011.2161534

11. Kato, T., N. Limsuwan, C. Y. Yu, K. Akatsu, and R. D. Lorenz, "Rare earth reduction using a novel variable magnetomotive force flux-intensified IPM machine," IEEE Transactions on Industry Applications, Vol. 50, No. 3, 1748-1756, 2014.
doi:10.1109/TIA.2013.2283314

12. Liu, F. J., X. Y. Zhu, W. Y. Wu, L. Quan, Z. X. Xiang, and Y. Z. Hua, "Design and analysis of an interior permanent magnet synchronous machine with multiflux-barriers based on flux-intensifying effect," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1949-1964, 2018.

13. Kim, K. C., K. Kim, H. J. Kim, and J. Lee, "Demagnetization analysis of permanent magnets according to rotor types of interior permanent magnet synchronous motor," IEEE Transactions on Magnetics, Vol. 45, No. 6, 2799-2802, 2009.
doi:10.1109/TMAG.2009.2018661

14. Zhao, X. K., B. Q. Kou, L. Zhang, and H. Q. Zhang, "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, No. 54, 182249-182259, 2020.
doi:10.1109/ACCESS.2020.3026841

15. Zhu, X. Y., W. Y. Wu, S. Yang, Z. X. Xiang, and L. Quan, "Comparative design and analysis of new type of flux-intensifying interior permanent magnet motors with different Q-axis rotor flux barriers," IEEE Transactions on Energy Conversion, Vol. 33, No. 4, 2260-2269, 2018.
doi:10.1109/TEC.2018.2837119

16. Ngo, K., M. F. Hsieh, and A. Huynh, "Torque enhancement for a novel flux intensifying PMa- SynRM using surface-inset permanent magnet," IEEE Transactions on Magnetics, Vol. 55, No. 7, 253-260, 2019.
doi:10.1109/TMAG.2019.2897022

17. Sun, A., et al., "Magnetization and performance analysis of a variable-flux flux-intensifying interior permanent magnet machine," 2015 IEEE International Electric Machines & Drives Conference (IEMDC), 369-375, 2015.
doi:10.1109/IEMDC.2015.7409086

18. Chen, J., J. Li, and R. Qu, "Maximum-torque-per-ampere and magnetization-state control of a variable-flux permanent magnet machine," IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 1158-1169, 2018.
doi:10.1109/TIE.2017.2733494

19. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016.

20. Zhang, L., X. Zhu, J. Gao, and Y. Mao, "Design and analysis of new five-phase flux-intensifying fault-tolerant interior-permanent-magnet motor for sensorless operation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 6055-6065, 2020.
doi:10.1109/TIE.2019.2955407

21. Huang, C. Z., Z. X. Zhang, X. P. Liu, J. J. Xiao, and H. Xu, "Finite element analysis and dynamics simulation of mechanical flux-varying PM machines with auto-rotary PMs," Journal of Power Electronics, Vol. 19, No. 3, 744-750, 2019.

22. Liu, X., T. Sun, Y. Zou, C. Huang, and J. Liang, "Modelling and analysis of a novel mechanical-variable- flux IPM machine with rotatable magnetic poles," IET Electric Power Applications, Vol. 14, No. 11, 2171-2178, 2020.
doi:10.1049/iet-epa.2020.0171

23. Morimoto, E., N. Niguchi, and K. Hirata, "Variable flux permanent magnet motor utilizing centrifugal force," International Journal of Applied Electromagnetics and Mechanics, Vol. 52, No. 1–2, 563-569, 2016.
doi:10.3233/JAE-162065